Sharp uniform bound between TV and Hellinger distances

Joonhyuk Jung

Oct 6, 2025

About Me

- 1. Seoul National University (2017-2023)
 - B.S. in Statistics and B.A. in Economics
- 2. The University of Chicago (2024-)
 - 2nd-year Ph.D. Student in Statistics
 - Advised by Prof. Chao Gao

Please visit https://joonhyuk.com for more details.

Problem Setup

In general, we have

$$H^2(p,q) \lesssim \mathrm{TV}(p,q) \lesssim H(p,q) \lesssim KL^{1/2}(p||q) \lesssim \chi(p||q),$$

where we define

$$H^2(p,q) := rac{1}{2} \int (\sqrt{p} - \sqrt{q})^2,$$
 $\mathrm{TV}(p,q) := rac{1}{2} \int |p-q|,$
 $KL(p||q) := \int p \log rac{p}{q},$
 $\chi^2(p||q) := \int rac{(p-q)^2}{q}.$

Gaussian Location Mixture Models

If we assume p and q to be Gaussian location mixtures:

$$p(x) = f_{\pi}(x) = \int \phi(x - \theta) d\pi(\theta),$$
 $q(x) = f_{\eta}(x) = \int \phi(x - \theta) d\eta(\theta),$

then it was shown in 2023 that

$$H(f_{\pi}, f_{\eta}) \asymp KL^{1/2}(f_{\pi}||f_{\eta})$$

provided that π and η are compactly supported [JPW23].

■ Here, " \approx " is hiding constants depending on the radius of support, but not depending on π or η .

Question

Under the same circumstances, is it also true that

$$\mathrm{TV}(f_{\pi},f_{\eta}) \asymp H(f_{\pi},f_{\eta})$$
?

■ In robust statistics, results on learning in TV are abundant, whereas results on learning in H are rather scarce. Therefore, if one could answer the above question, many results would follow.

Question

Under the same circumstances, is it also true that

$$\mathrm{TV}(f_{\pi},f_{\eta}) \asymp H(f_{\pi},f_{\eta})$$
?

- In robust statistics, results on learning in TV are abundant, whereas results on learning in H are rather scarce. Therefore, if one could answer the above question, many results would follow.
- This has been open at least since 2023.

Question

Under the same circumstances, is it also true that

$$\mathrm{TV}(f_{\pi},f_{\eta}) \asymp H(f_{\pi},f_{\eta})$$
?

- In robust statistics, results on learning in TV are abundant, whereas results on learning in H are rather scarce. Therefore, if one could answer the above question, many results would follow.
- This has been open at least since 2023.
- It turns out that the answer is NO. That is, $H(f_{\pi}, f_{\eta})$ cannot be linearly and uniformly upper bounded by $\mathrm{TV}(f_{\pi}, f_{\eta})$.

$$H(f_{\pi}, f_{\eta}) \not\lesssim \mathrm{TV}(f_{\pi}, f_{\eta}).$$

Main Result

Theorem (Nonlinear uniform bound of Hellinger distances)

Let π and η be probability measures supported on $[-\frac{M}{2}, \frac{M}{2}]$. Then,

$$H(f_{\pi}, f_{\eta}) \lesssim \text{TV}(f_{\pi}, f_{\eta})^{1 - \Omega} \left(1/\log \log(1/\text{TV}(f_{\pi}, f_{\eta})) \right).$$

■ The exponent correction of $1/\log\log(1/t)$ from the above bound cannot be improved up to constant factors.

Sharpness

Theorem (Sharpness)

There exist two sequences of probability measures $\{\pi_n\}$ and $\{\eta_n\}$ supported on $[-\frac{M}{2},\frac{M}{2}]$ such that, if we define

$$H_n := H(f_{\pi_n}, f_{\eta_n}), \qquad \qquad \mathrm{TV}_n := \mathrm{TV}(f_{\pi_n}, f_{\eta_n}),$$

then $H_n \downarrow 0$ as $n \to \infty$, and moreover it holds for all n that

$$H_n \geq \mathrm{TV}_n^{1-\epsilon^*(\mathrm{TV}_n)},$$

where we define

$$\epsilon^*(t) := \frac{0.33}{\log\log(1/t)}.$$

References I

Zeyu Jia, Yury Polyanskiy, and Yihong Wu, *Entropic characterization of optimal rates for learning gaussian mixtures*, The Thirty Sixth Annual Conference on Learning Theory, PMLR, 2023, pp. 4296–4335.