

Sharp Inequalities between TV and Hellinger Distances for Gaussian Mixtures

Joonhyuk Jung

Feb 4, 2026

Joonhyuk Jung

1. Seoul National University (2017-2023)
 - B.S. in Statistics and B.A. in Economics
2. The University of Chicago (2024-)
 - 2nd-year Ph.D. Student in Statistics
 - Advisor: Prof. Chao Gao

Please visit <https://joonhyuk.com> for more details.

Authors

This is a joint work with Prof. Chao Gao. [arXiv:2602.03202]

Recap: Gaussian Location Mixtures

We define d -dimensional Gaussian location mixture by

$$f_{\pi}(x) = \int_{\mathbb{R}^d} \phi_d(x - \theta) d\pi(\theta),$$

where

$$\phi_d(x) = (2\pi)^{-d/2} \exp\left(-\frac{\|x\|_2^2}{2}\right)$$

is the standard Gaussian density.

- Nonparametric density estimation;
- Bayesian inference;
- Clustering [Lin95, Das99].

Recap: f -Divergences

Recall that, in general, we have

$$H^2(p, q) \leq \text{TV}(p, q) \leq \sqrt{2}H(p, q) \leq \sqrt{2\text{KL}(p\|q)} \leq \sqrt{2\chi^2(p\|q)},$$

where we define

$$H^2(p, q) := \frac{1}{2} \int (\sqrt{p} - \sqrt{q})^2,$$

$$\text{TV}(p, q) := \frac{1}{2} \int |p - q|,$$

$$\text{KL}(p\|q) := \int p \log \frac{p}{q},$$

$$\chi^2(p\|q) := \int \frac{(p - q)^2}{q}.$$

Related Works: Hellinger Distance

The Hellinger distance H is a commonly used loss function for density estimation as it is useful in Gaussian location mixture estimation [WS95, KG22].

Why Hellinger? Bounded metric, symmetric, tensorized, etc.

- An upper bound on $H(f_\pi, f_\eta)$ immediately implies an upper bound on $\text{TV}(f_\pi, f_\eta)$.

$$H^2(f_\pi, f_\eta) \leq \text{TV}(f_\pi, f_\eta) \leq \sqrt{2}H(f_\pi, f_\eta).$$

Related Works: Hellinger Distance

The Hellinger distance H is a commonly used loss function for density estimation as it is useful in Gaussian location mixture estimation [WS95, KG22].

Why Hellinger? Bounded metric, symmetric, tensorized, etc.

- An upper bound on $H(f_\pi, f_\eta)$ immediately implies an upper bound on $\text{TV}(f_\pi, f_\eta)$.

$$H^2(f_\pi, f_\eta) \leq \text{TV}(f_\pi, f_\eta) \leq \sqrt{2}H(f_\pi, f_\eta).$$

- The Hellinger control has a direct consequence for bounding the regret of an empirical Bayes estimator, e.g., NPMLE [GW00, GVDV01, JZ09, SG20, SGS25].

Related Works: Information Theory

Suppose $\pi([-M, M]^d) = \eta([-M, M]^d) = 1$ for some $M > 0$. Then, f_π and f_η satisfy

$$H(f_\pi, f_\eta) \asymp \sqrt{\text{KL}(f_\pi \| f_\eta)},$$

up to constant factors depending on M and d [JPW23].

- This allows an entropic characterization of learning in Hellinger of Gaussian mixtures (Will be discussed later).

$$\inf_{\hat{P}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[H^2 \left(P, \hat{P} \right) \right] \asymp \inf_{\epsilon > 0} \left(\epsilon^2 + \frac{1}{n} \underbrace{\log N_{H, \text{loc}}(\mathcal{P}, \epsilon)}_{\text{local Hellinger entropy}} \right).$$

Resolving an Open Question

- Prior to our contribution, it was questioned whether

$$\text{TV}(f_\pi, f_\eta) \stackrel{?}{\asymp} H(f_\pi, f_\eta)$$

holds for Gaussian mixtures [JPW23].

Resolving an Open Question

- Prior to our contribution, it was questioned whether

$$\text{TV}(f_\pi, f_\eta) \stackrel{?}{\asymp} H(f_\pi, f_\eta)$$

holds for Gaussian mixtures [JPW23].

- That is,

$$H(f_\pi, f_\eta) \stackrel{?}{\leq} \text{TV}(f_\pi, f_\eta)$$

Resolving an Open Question

- Prior to our contribution, it was questioned whether

$$\text{TV}(f_\pi, f_\eta) \stackrel{?}{\asymp} H(f_\pi, f_\eta)$$

holds for Gaussian mixtures [JPW23].

- That is,

$$H(f_\pi, f_\eta) \stackrel{?}{\leq} \text{TV}(f_\pi, f_\eta)$$

- We say NO by proving

$$H(f_\pi, f_\eta) \leq \text{TV}(f_\pi, f_\eta)^{1 - \frac{\Theta(1)}{\log \log(1/\text{TV}(f_\pi, f_\eta))}}$$

and by constructing a sharp example $(\pi_n, \eta_n)_{n=1}^\infty$ of this inequality.

Resolving an Open Question

This might be unexpected:

Re: TV and H for Gaussian mixtures

YP

○ Yury Polyanskiy <polyanskiy@gmail.com> Yesterday at 9:56 AM

To: Chao Gao; Cc: zyjia@mit.edu; yihong.wu@yale.edu; +1 more

Ah, cool result! Thanks Chao and Joonhyuk. I didn't expect $H \backslash \text{asymp}$ TV is wrong.

Our Contribution

When the data set contains a small subset of arbitrary outliers, the density estimation problem can be regarded as misspecified under total variation.

- Too loose for deriving optimal error rates for robust density estimation:

$$H^2(f_\pi, f_\eta) \leq \text{TV}(f_\pi, f_\eta) \leq \sqrt{2}H(f_\pi, f_\eta).$$

Our Contribution

When the data set contains a small subset of arbitrary outliers, the density estimation problem can be regarded as misspecified under total variation.

- Too loose for deriving optimal error rates for robust density estimation:

$$H^2(f_\pi, f_\eta) \leq \text{TV}(f_\pi, f_\eta) \leq \sqrt{2}H(f_\pi, f_\eta).$$

- Our contribution 1: Better inequalities!

$$H^{1+o(1)}(f_\pi, f_\eta) \leq \text{TV}(f_\pi, f_\eta) \leq \sqrt{2}H(f_\pi, f_\eta).$$

Our Contribution

When the data set contains a small subset of arbitrary outliers, the density estimation problem can be regarded as misspecified under total variation.

- Too loose for deriving optimal error rates for robust density estimation:

$$H^2(f_\pi, f_\eta) \leq \text{TV}(f_\pi, f_\eta) \leq \sqrt{2}H(f_\pi, f_\eta).$$

- Our contribution 1: Better inequalities!

$$H^{1+o(1)}(f_\pi, f_\eta) \leq \text{TV}(f_\pi, f_\eta) \leq \sqrt{2}H(f_\pi, f_\eta).$$

- Our contribution 2: The $o(1)$ term is indeed necessary, i.e., unimprovable.

Our Contribution

When the data set contains a small subset of arbitrary outliers, the density estimation problem can be regarded as misspecified under total variation.

- Too loose for deriving optimal error rates for robust density estimation:

$$H^2(f_\pi, f_\eta) \leq \text{TV}(f_\pi, f_\eta) \leq \sqrt{2}H(f_\pi, f_\eta).$$

- Our contribution 1: Better inequalities!

$$H^{1+o(1)}(f_\pi, f_\eta) \leq \text{TV}(f_\pi, f_\eta) \leq \sqrt{2}H(f_\pi, f_\eta).$$

- Our contribution 2: The $o(1)$ term is indeed necessary, i.e., unimprovable.
- Our contribution 3: Implications in robust statistics!

Preview: Implication I

Theorem (Minimax rate of robust density estimation)

Consider the data generating process as follows.

$$X_1, \dots, X_n \stackrel{i.i.d.}{\sim} P := (1 - \epsilon)P_{f_\pi} + \epsilon Q, \quad (1)$$

Then, we have

$$\inf_{\hat{f}} \sup_{\pi, Q} \mathbb{E} \left[H^2 \left(f_\pi, \hat{f} \right) \right] \asymp \epsilon^{2 \left(1 - \frac{\Theta(1)}{\log(\log(1/\epsilon) \vee e)} \right)}, \quad (2)$$

where the expectation is under (1) and the supremum is taken over all Q and π such that $\text{supp}(\pi) \subseteq [-M, M]^d$, provided that the sample size satisfies $n \geq \text{poly}(1/\epsilon)$.

Preview: Implication II

Theorem (Robust regret bound)

Consider the data generating process as follows.

$$X_i \sim (1 - \epsilon)N(\theta_i, I_d) + \epsilon Q, \quad (3)$$

$$\theta_1, \dots, \theta_n \stackrel{i.i.d.}{\sim} \pi.$$

Then, we have

$$\begin{aligned} & \inf_{\widehat{\theta}} \sup_{\pi, Q} \mathbb{E} \left[\mathbb{E}_{X \sim f_\pi} \left\| \widehat{\theta}(X) - \widehat{\theta}^*(X) \right\|^2 \right] \\ & \lesssim \epsilon^{2 \left(1 - \frac{\Theta(1)}{\log(\log(1/\epsilon) \vee e)} \right)} + \left(\frac{1}{n} \right)^{1-o(1)}, \end{aligned}$$

where the outer expectation is under (3) and the supremum is taken over all Q and π such that $\text{supp}(\pi) \subseteq [-M, M]^d$.

- Main Results (Formal)
 - Proof Technique: Hermite Polynomials
 - Physical Interpretation: Quantum Harmonic Oscillator
- Sharpness Results (Formal)
- Applications
 - Entropic Characterization of Learning in Total Variation
 - Robust Density Estimation
 - Robust Regret Bound in Empirical Bayes

Main Result (Hellinger distance)

What we want to show:

Corollary (Inequality between TV and Hellinger distances)

Let π and η be probability measures supported on the d -dimensional cube $[-M, M]^d$. Let $\delta > 0$. Then, there exists $C_0 = C_0(\delta, M, d) > 0$, not depending on π or η , such that

$$H(f_\pi, f_\eta) \leq \left(C_0 \vee \text{TV}^{-\alpha(\text{TV}(f_\pi, f_\eta))}(f_\pi, f_\eta) \right) \text{TV}(f_\pi, f_\eta),$$

where we define

$$\alpha(t) := \frac{2 + \delta}{\log(\log(1/t) \vee e)}, \quad (4)$$

for $t > 0$.

Main Theorem (χ^2 -divergence)

The above corollary follows immediately from our main theorem:

Theorem (Inequality between TV distance and χ^2 -divergence)

Let π and η be probability measures supported on the d -dimensional cube $[-M, M]^d$. Let $\delta > 0$. Then, there exists $C_0 = C_0(\delta, M, d) > 0$, not depending on π or η , such that

$$\sqrt{\chi^2(f_\pi \| f_\eta)} \leq \left(C_0 \vee \text{TV}^{-\alpha(\text{TV}(f_\pi, f_\eta))}(f_\pi, f_\eta) \right) \text{TV}(f_\pi, f_\eta),$$

where we define $\alpha(\cdot)$ as in (4).

Stronger Main Theorem ($L^2(\phi_d)$ -norm)

We indeed prove a stronger result.

Theorem (Inequality between $L^1(\phi_d)$ and $L^2(\phi_d)$ norms)

Let π and η be probability measures supported on the d -dimensional cube $[-2M, 2M]^d$. Let $\delta > 0$. Then, there exists $C_0 = C_0(\delta, M, d) > 0$, not depending on π or η , such that

$$\sqrt{\int \frac{(f_\pi - f_\eta)^2}{\phi_d}} \leq (C_0 \vee \text{TV}^{-\alpha(\text{TV}(f_\pi, f_\eta))}(f_\pi, f_\eta)) \text{TV}(f_\pi, f_\eta),$$

where we define $\alpha(\cdot)$ as in (4).

Why Stronger?

Remark

Let us define $g := \frac{f_\pi - f_\eta}{\phi_d}$. Then, we have

$$\|g\|_{L^2(\phi_d)} = \sqrt{\int_{\mathbb{R}^d} |g|^2 \phi_d} = \sqrt{\int_{\mathbb{R}^d} \frac{(f_\pi - f_\eta)^2}{\phi_d}},$$

$$\|g\|_{L^1(\phi_d)} = \int_{\mathbb{R}^d} |g| \phi_d = \int_{\mathbb{R}^d} |f_\pi - f_\eta| = 2\text{TV}(f_\pi, f_\eta).$$

Moreover, by convexity argument (Jensen and Fubini-Tonelli),

$$\chi^2(f_\pi \| f_\eta) = \int_{\mathbb{R}^d} \frac{(f_\pi - f_\eta)^2}{f_\eta} \leq \sup_{\theta \in [-M, M]^d} \int_{\mathbb{R}^d} \frac{(f_\pi(x) - f_\eta(x))^2}{\phi_d(x - \theta)} dx.$$

- It only remains to bound $\|g\|_{L^2(\phi_d)}$ from above by $\|g\|_{L^1(\phi_d)}$.

Hermite Polynomial Expansion

Lemma (Hermite polynomial expansion)

For $\theta = (\theta_1, \dots, \theta_d) \in \mathbb{R}^d$ and $x = (x_1, \dots, x_d) \in \mathbb{R}^d$, we have

$$\frac{\phi_d(x - \theta)}{\phi_d(x)} = \sum_{\mathbf{k} \in \mathbb{N}_0^d} \frac{\theta^\mathbf{k}}{\sqrt{\mathbf{k}!}} h_\mathbf{k}(x),$$

where we define

$$\theta^\mathbf{k} := \prod_{j=1}^d \theta_j^{k_j}, \quad \mathbf{k}! := \prod_{j=1}^d k_j!, \quad h_\mathbf{k}(x) := \prod_{j=1}^d h_{k_j}(x_j).$$

- $\{h_\mathbf{k} : \mathbf{k} \in \mathbb{N}_0^d\}$ is an orthonormal basis of $L^2(\phi_d)$.
- For $d = 1$ and $k \in \mathbb{N}_0$, we define $h_k(x) := \frac{(-1)^k}{\sqrt{k!} \phi_1(x)} \frac{d^k}{dx^k} \phi_1(x)$.

Hermite Polynomial Expansion

Lemma (Hermite polynomial expansion)

That is,

$$g(x) := \frac{f_\pi(x) - f_\eta(x)}{\phi_d(x)} = \sum_{\mathbf{k} \in \mathbb{N}_0^d} \frac{\Delta_{\mathbf{k}}}{\sqrt{\mathbf{k}!}} h_{\mathbf{k}}(x),$$

where

$$\Delta_{\mathbf{k}} = \int_{\mathbb{R}^d} \theta^{\mathbf{k}} d(\pi - \eta)(\theta).$$

is the difference in \mathbf{k} -th moments between π and η .

- By Parseval's theorem, $\|g\|_{L^2(\phi_d)}^2 = \sum_{\mathbf{k} \in \mathbb{N}_0^d} \frac{\Delta_{\mathbf{k}}^2}{\mathbf{k}!}.$

Extremal Problem

Recall that we want to bound $\|g\|_{L^2(\phi_d)}$ from above by $\|g\|_{L^1(\phi_d)}$.
What if we consider a proper subspace of $L^2(\phi_d)$?

Definition (Extremal problem)

Define

$$c_{n,d} := \inf \left\{ \|P\|_{L^1(\phi_d)} : P \in \Pi_n^d, \|P\|_{L^2(\phi_d)} = 1 \right\}, \quad (5)$$

where Π_n^d is the set of real polynomials of total degree $\leq n$ in d variables.

- $\{h_{\mathbf{k}} : \mathbf{k} \in \mathbb{N}_0^d, |\mathbf{k}| \leq n\}$ is an orthonormal basis of the finite-dimensional subspace $\Pi_n^d \subseteq L^2(\phi_d)$.
- $|\mathbf{k}| := k_1 + \cdots + k_d$, $\dim \Pi_n^d = \binom{n+d}{n}$.

Proof Sketch of the Main Theorem ($L^2(\phi_d)$ -norm)

We decompose $g = q + r$, where

$$q = \sum_{|\mathbf{k}| \leq n} \frac{\Delta_{\mathbf{k}}}{\sqrt{\mathbf{k}!}} h_{\mathbf{k}} \in \Pi_n^d, \quad r = \sum_{|\mathbf{k}| > n} \frac{\Delta_{\mathbf{k}}}{\sqrt{\mathbf{k}!}} h_{\mathbf{k}}.$$

Then,

$$\begin{aligned} \|g\|_{L^1(\phi_d)} &\geq \|q\|_{L^1(\phi_d)} - \|r\|_{L^1(\phi_d)} \\ &\geq c_{n,d} \|q\|_{L^2(\phi_d)} - \|r\|_{L^2(\phi_d)} \\ &\geq \underbrace{c_{n,d} \|g\|_{L^2(\phi_d)}}_{e^{-O(n)}} - \underbrace{2 \|r\|_{L^2(\phi_d)}}_{O\left(e^{-\frac{n \log n}{2}}\right)}. \quad (\because c_{n,d} \leq 1) \end{aligned}$$

Hence, we choose

$$n \approx \frac{2 \log(1/\|g\|_{L^1(\phi_d)})}{\log \log(1/\|g\|_{L^1(\phi_d)})}.$$

We now proceed to prove $c_{n,d} = e^{-O(n)}$:

Proposition (Asymptotic lower bound on $c_{n,d}$)

Suppose $\kappa_1 > 1$. Then, there exists a constant $A_1 = A_1(\kappa_1)$, depending only on κ_1 , such that, if $n \geq A_1 d$, then we have $c_{n,d} \geq 3e^{-\kappa_1 n}$. That is, for all $P \in \Pi_n^d$,

$$\|P\|_{L^1(\phi_d)} \geq 3e^{-\kappa_1 n} \|P\|_{L^2(\phi_d)}.$$

Lower Bound on $c_{n,d}$ (Two Ingredients)

Proposition (Nikolskii-type inequality)

For all $P \in \Pi_n^d$, we have

$$\sup_{x \in \mathbb{R}^d} \left| P(x) \phi_d^{1/2}(x) \right| \leq \left(\frac{(n+d)^{n+d}}{n^n (2\pi d)^d} \right)^{1/4} \|P\|_{L^2(\mathbb{R}^d, \phi_d)}.$$

Proposition (Restricted-range inequality)

Write $E_{n,d} := 2n + d$. Suppose $\kappa > 1$. Then, there exists a constant $A = A(\kappa)$, depending only on κ , such that, if $E_{n,d} \geq Ad$, then, for all $P \in \Pi_n^d$, we have

$$\int_{\|x\|_2 > \sqrt{2\kappa E_{n,d}}} P^2(x) \phi_d(x) \leq \frac{1}{2} \|P\|_{L^2(\mathbb{R}^d, \phi_d)}^2.$$

Lower Bound on $c_{n,d}$ (Combining the Ingredients)

For large enough n , every $P \in \Pi_n^d$ satisfies

$$\begin{aligned}
 & \|P\|_{L^2(\mathbb{R}^d, \phi_d)}^2 \\
 & \leq 2 \int_{\|x\|_2 \leq \sqrt{2\kappa E_{n,d}}} P^2(x) \phi_d(x) \quad (\text{by Restricted-range inequality}) \\
 & \leq 2 \sup_{\|x\|_2 \leq \sqrt{2\kappa E_{n,d}}} \left| \phi_d^{-1/2}(x) \right| \sup_{x \in \mathbb{R}^d} \left| P(x) \phi_d^{1/2}(x) \right| \int_{\mathbb{R}^d} |P \phi_d| \\
 & \leq 2 \left((2\pi)^{d/4} e^{\kappa E_{n,d}/2} \right) \left(\frac{(n+d)^{n+d}}{n^n (2\pi d)^d} \right)^{1/4} \|P\|_{L^2(\mathbb{R}^d, \phi_d)} \|P\|_{L^1(\mathbb{R}^d, \phi_d)} \\
 & \qquad (\text{by Nikolskii-type inequality}) \\
 & \leq \frac{1}{3} e^{\kappa_1 n} \|P\|_{L^2(\mathbb{R}^d, \phi_d)} \|P\|_{L^1(\mathbb{R}^d, \phi_d)}. \quad (1 < \kappa < \kappa_1)
 \end{aligned}$$

Lower Bound on $c_{n,d}$ (Discussion)

Let us consider the meaning of the restricted-range inequality.

Proposition (Restricted-range inequality (Stronger version))

Write $E_{n,d} := 2n + d$. Suppose $\kappa > 1$. Then, there exist positive constants $A = A(\kappa)$ and $c = c(\kappa)$, depending only on κ , such that, if $E_{n,d} \geq Ad$, then, for all $P \in \Pi_n^d$, we have

$$\int_{\|x\|_2 > \sqrt{2\kappa E_{n,d}}} P^2(x) \phi_d(x) \leq e^{-cE_{n,d}} \|P\|_{L^2(\mathbb{R}^d, \phi_d)}^2.$$

- Statisticians: The Gaussian tail is sufficiently light to bound any polynomial within a restricted range: $\|x\|_2 \leq \sqrt{2\kappa E_{n,d}}$.

Lower Bound on $c_{n,d}$ (Discussion)

Let us consider the meaning of the restricted-range inequality.

Proposition (Restricted-range inequality (Stronger version))

Write $E_{n,d} := 2n + d$. Suppose $\kappa > 1$. Then, there exist positive constants $A = A(\kappa)$ and $c = c(\kappa)$, depending only on κ , such that, if $E_{n,d} \geq Ad$, then, for all $P \in \Pi_n^d$, we have

$$\int_{\|x\|_2 > \sqrt{2\kappa E_{n,d}}} P^2(x) \phi_d(x) \leq e^{-cE_{n,d}} \|P\|_{L^2(\mathbb{R}^d, \phi_d)}^2.$$

- Statisticians: The Gaussian tail is sufficiently light to bound any polynomial within a restricted range: $\|x\|_2 \leq \sqrt{2\kappa E_{n,d}}$.
- Physicists: In the semi-classical regime ($E_{n,d} \rightarrow \infty$), the probability mass in the classically forbidden region becomes negligible.

Lower Bound on $c_{n,d}$ (Discussion)

Let us consider the meaning of the restricted-range inequality.

Proposition (Restricted-range inequality (Stronger version))

Write $E_{n,d} := 2n + d$. Suppose $\kappa > 1$. Then, there exist positive constants $A = A(\kappa)$ and $c = c(\kappa)$, depending only on κ , such that, if $E_{n,d} \geq Ad$, then, for all $P \in \Pi_n^d$, we have

$$\int_{\|x\|_2 > \sqrt{2\kappa E_{n,d}}} P^2(x) \phi_d(x) \leq e^{-cE_{n,d}} \|P\|_{L^2(\mathbb{R}^d, \phi_d)}^2.$$

- Statisticians: The Gaussian tail is sufficiently light to bound any polynomial within a restricted range: $\|x\|_2 \leq \sqrt{2\kappa E_{n,d}}$.
- Physicists: In the semi-classical regime ($E_{n,d} \rightarrow \infty$), the probability mass in the classically forbidden region becomes negligible.
- $E_{n,d}$ is the energy; $\{\|x\|_2 > \sqrt{2E_{n,d}}\}$ is the forbidden region.

Physical Interpretation

- A classical Hamiltonian of a particle in \mathbb{R}^d :

$$\begin{aligned}\mathcal{H}_{\text{cl}} &= \frac{1}{2} \|\xi\|_2^2 + V(x) \\ &= \underbrace{\frac{1}{2} \|\xi\|_2^2}_{\text{kinetic energy}} + \underbrace{\frac{1}{2} \|x\|_2^2}_{\text{potential energy}}.\end{aligned}$$

- Given the energy level E , $\|x\|_2 > \sqrt{2E}$ is forbidden in classical physics. **We do not allow the kinetic energy to be negative.**

Quantum Harmonic Oscillator

- A classical Hamiltonian of a particle in \mathbb{R}^d :

$$\begin{aligned}\mathcal{H}_{\text{cl}} &= \frac{1}{2} \|\xi\|_2^2 + V(x) \\ &= \underbrace{\frac{1}{2} \|\xi\|_2^2}_{\text{kinetic energy}} + \underbrace{\frac{1}{2} \|x\|_2^2}_{\text{potential energy}} .\end{aligned}$$

Quantum Harmonic Oscillator

- A classical Hamiltonian of a particle in \mathbb{R}^d :

$$\begin{aligned}\mathcal{H}_{\text{cl}} &= \frac{1}{2} \|\xi\|_2^2 + V(x) \\ &= \underbrace{\frac{1}{2} \|\xi\|_2^2}_{\text{kinetic energy}} + \underbrace{\frac{1}{2} \|x\|_2^2}_{\text{potential energy}}.\end{aligned}$$

- The quantum-mechanical analog:

$$\begin{aligned}\mathcal{H} &= -\frac{\hbar^2}{2} \nabla^2 + V \\ \psi &\mapsto -\frac{\hbar^2}{2} \left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_d^2} \right) \psi + \frac{1}{2} (x_1^2 + \cdots + x_d^2) \psi.\end{aligned}$$

Quantum Harmonic Oscillator

- A classical Hamiltonian of a particle in \mathbb{R}^d :

$$\begin{aligned}\mathcal{H}_{\text{cl}} &= \frac{1}{2} \|\xi\|_2^2 + V(x) \\ &= \underbrace{\frac{1}{2} \|\xi\|_2^2}_{\text{kinetic energy}} + \underbrace{\frac{1}{2} \|x\|_2^2}_{\text{potential energy}}.\end{aligned}$$

- The quantum-mechanical analog:

$$\begin{aligned}\mathcal{H} &= -\frac{\hbar^2}{2} \nabla^2 + V \\ \psi &\mapsto -\frac{\hbar^2}{2} \left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_d^2} \right) \psi + \frac{1}{2} (x_1^2 + \cdots + x_d^2) \psi.\end{aligned}$$

- $\hbar > 0$ is the Planck constant.

Schrödinger Equation

- Quantum harmonic oscillators ψ are characterized as the eigenvectors (eigenfunctions) of $\mathcal{H} = -\frac{\hbar^2}{2}\nabla^2 + V$:

$$\mathcal{H}\psi = E\psi.$$

Schrödinger Equation

- Quantum harmonic oscillators ψ are characterized as the eigenvectors (eigenfunctions) of $\mathcal{H} = -\frac{\hbar^2}{2}\nabla^2 + V$:

$$\mathcal{H}\psi = E\psi.$$

- $E > 0$, the energy level, is the corresponding eigenvalue.

Schrödinger Equation

- Quantum harmonic oscillators ψ are characterized as the eigenvectors (eigenfunctions) of $\mathcal{H} = -\frac{\hbar^2}{2}\nabla^2 + V$:

$$\mathcal{H}\psi = E\psi.$$

- $E > 0$, the energy level, is the corresponding eigenvalue.
- The above equation is known as (time-independent) Schrödinger equation.

Schrödinger Equation (Solutions)

- If $\hbar = 2$, in particular, $\psi_{\mathbf{k}} = h_{\mathbf{k}} \phi_d^{1/2}$ satisfies $\mathcal{H}\psi_{\mathbf{k}} = E_{\mathbf{k}}\psi_{\mathbf{k}}$.

Schrödinger Equation (Solutions)

- If $\hbar = 2$, in particular, $\psi_{\mathbf{k}} = h_{\mathbf{k}} \phi_d^{1/2}$ satisfies $\mathcal{H}\psi_{\mathbf{k}} = E_{\mathbf{k}}\psi_{\mathbf{k}}$.
- Note that $\psi_{\mathbf{k}}$ is called the \mathbf{k} -th **Hermite function**,

Schrödinger Equation (Solutions)

- If $\hbar = 2$, in particular, $\psi_{\mathbf{k}} = h_{\mathbf{k}} \phi_d^{1/2}$ satisfies $\mathcal{H}\psi_{\mathbf{k}} = E_{\mathbf{k}}\psi_{\mathbf{k}}$.
- Note that $\psi_{\mathbf{k}}$ is called the **k**-th **Hermite function**,
- where $h_{\mathbf{k}}$ is the **k**-th Hermite polynomial in \mathbb{R}^d and $E_{\mathbf{k}} = 2|\mathbf{k}| + d$ for **state** $\mathbf{k} \in \mathbb{N}_0^d$.

Schrödinger Equation (Solutions)

- If $\hbar = 2$, in particular, $\psi_{\mathbf{k}} = h_{\mathbf{k}} \phi_d^{1/2}$ satisfies $\mathcal{H}\psi_{\mathbf{k}} = E_{\mathbf{k}}\psi_{\mathbf{k}}$.
- Note that $\psi_{\mathbf{k}}$ is called the **k**-th **Hermite function**,
- where $h_{\mathbf{k}}$ is the **k**-th Hermite polynomial in \mathbb{R}^d and $E_{\mathbf{k}} = 2|\mathbf{k}| + d$ for **state** $\mathbf{k} \in \mathbb{N}_0^d$.
- $\|\psi_{\mathbf{k}}\|_{L^2(\mathbb{R}^d)} = \|h_{\mathbf{k}}\|_{L^2(\mathbb{R}^d, \phi_d)} = 1$.

Schrödinger Equation (Solutions)

- If $\hbar = 2$, in particular, $\psi_{\mathbf{k}} = h_{\mathbf{k}} \phi_d^{1/2}$ satisfies $\mathcal{H}\psi_{\mathbf{k}} = E_{\mathbf{k}}\psi_{\mathbf{k}}$.
- Note that $\psi_{\mathbf{k}}$ is called the **k**-th **Hermite function**,
- where $h_{\mathbf{k}}$ is the **k**-th Hermite polynomial in \mathbb{R}^d and $E_{\mathbf{k}} = 2|\mathbf{k}| + d$ for **state** $\mathbf{k} \in \mathbb{N}_0^d$.
- $\|\psi_{\mathbf{k}}\|_{L^2(\mathbb{R}^d)} = \|h_{\mathbf{k}}\|_{L^2(\mathbb{R}^d, \phi_d)} = 1$.
- $\psi_{\mathbf{k}}^2(x)$ explains the **spatial density of states (DOS)** for $x \in \mathbb{R}^d$.

Schrödinger Equation (Solutions)

- If $\hbar = 2$, in particular, $\psi_{\mathbf{k}} = h_{\mathbf{k}} \phi_d^{1/2}$ satisfies $\mathcal{H}\psi_{\mathbf{k}} = E_{\mathbf{k}}\psi_{\mathbf{k}}$.
- Note that $\psi_{\mathbf{k}}$ is called the **k**-th **Hermite function**,
- where $h_{\mathbf{k}}$ is the **k**-th Hermite polynomial in \mathbb{R}^d and $E_{\mathbf{k}} = 2|\mathbf{k}| + d$ for **state** $\mathbf{k} \in \mathbb{N}_0^d$.
- $\|\psi_{\mathbf{k}}\|_{L^2(\mathbb{R}^d)} = \|h_{\mathbf{k}}\|_{L^2(\mathbb{R}^d, \phi_d)} = 1$.
- $\psi_{\mathbf{k}}^2(x)$ explains the **spatial density of states (DOS)** for $x \in \mathbb{R}^d$.
- Relation to the restricted-range inequality?

Schrödinger Equation (Solutions)

- If $\hbar = 2$, in particular, $\psi_{\mathbf{k}} = h_{\mathbf{k}} \phi_d^{1/2}$ satisfies $\mathcal{H}\psi_{\mathbf{k}} = E_{\mathbf{k}}\psi_{\mathbf{k}}$.
- Note that $\psi_{\mathbf{k}}$ is called the **k-th Hermite function**,
- where $h_{\mathbf{k}}$ is the **k-th Hermite polynomial** in \mathbb{R}^d and $E_{\mathbf{k}} = 2|\mathbf{k}| + d$ for **state** $\mathbf{k} \in \mathbb{N}_0^d$.
- $\|\psi_{\mathbf{k}}\|_{L^2(\mathbb{R}^d)} = \|h_{\mathbf{k}}\|_{L^2(\mathbb{R}^d, \phi_d)} = 1$.
- $\psi_{\mathbf{k}}^2(x)$ explains the **spatial density of states (DOS)** for $x \in \mathbb{R}^d$.
- Relation to the restricted-range inequality?

Proposition (Restricted-range inequality (Stronger version))

$$\int_{\|x\|_2 > \sqrt{2\kappa E_{n,d}}} P^2(x) \phi_d(x) \leq e^{-cE_{n,d}} \|P\|_{L^2(\mathbb{R}^d, \phi_d)}^2.$$

Lower Bound on $c_{n,d}$ (Proof 1/2)

Proof.

For $P \in \Pi_n^d$, write $P = \sum_{|\mathbf{k}| \leq n} c_{\mathbf{k}} h_{\mathbf{k}}$ and

$$\begin{aligned} \int_{\|x\|_2 > \sqrt{2\kappa E_{n,d}}} P^2(x) \phi_d(x) &= \sum_{|\mathbf{k}| \leq n} \sum_{|\mathbf{l}| \leq n} c_{\mathbf{k}} M_{\mathbf{k}\mathbf{l}} c_{\mathbf{l}} \\ &\leq \text{tr}(M) \sum_{|\mathbf{k}| \leq n} c_{\mathbf{k}}^2 \\ &= \text{tr}(M) \|P\|_{L^2(\mathbb{R}^d, \phi_d)}^2, \end{aligned}$$

where $M = (M_{\mathbf{k}\mathbf{l}})_{\mathbf{k},\mathbf{l}}$ is a $(\dim \Pi_n^d) \times (\dim \Pi_n^d)$ p.s.d. matrix with

$$M_{\mathbf{k}\mathbf{l}} := \int_{\|x\|_2 > \sqrt{2\kappa E_{n,d}}} \underbrace{\psi_{\mathbf{k}}(x) \psi_{\mathbf{l}}(x)}_{h_{\mathbf{k}}(x) h_{\mathbf{l}}(x) \phi_d(x)} .$$

Lower Bound on $c_{n,d}$ (Proof 2/2)

Continued.

Recall that $E_{n,d} = 2n + d$ and that $E_{\mathbf{k}} = 2|\mathbf{k}| + d$. It hence suffices to prove the following inequality:

$$\text{tr}(M) = \sum_{|\mathbf{k}| \leq n} M_{\mathbf{k}\mathbf{k}} = \int_{\|x\|_2 > \sqrt{2\kappa E_{n,d}}} \sum_{E_{\mathbf{k}} \leq E_{n,d}} \psi_{\mathbf{k}}^2(x) \stackrel{?}{\leq} e^{-cE_{n,d}}.$$

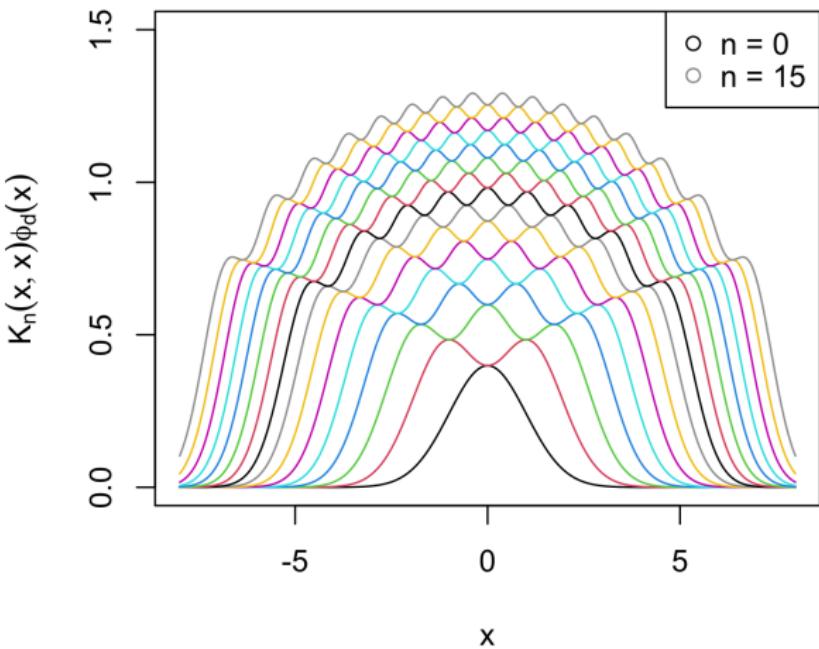
□

Proposition (Local Weyl Law [GS13])

$$\begin{aligned} \sum_{E_{\mathbf{k}} \leq E_{n,d}} \psi_{\mathbf{k}}^2(x) &\xrightarrow{E_{n,d} \rightarrow \infty} (4\pi)^{-d} \int_{\mathcal{H}_{\text{cl}} \leq E_{n,d}} d\xi \\ &= (4\pi)^{-d} \omega_d \left(2E_{n,d} - \|x\|_2^2\right)^{d/2}. \end{aligned}$$

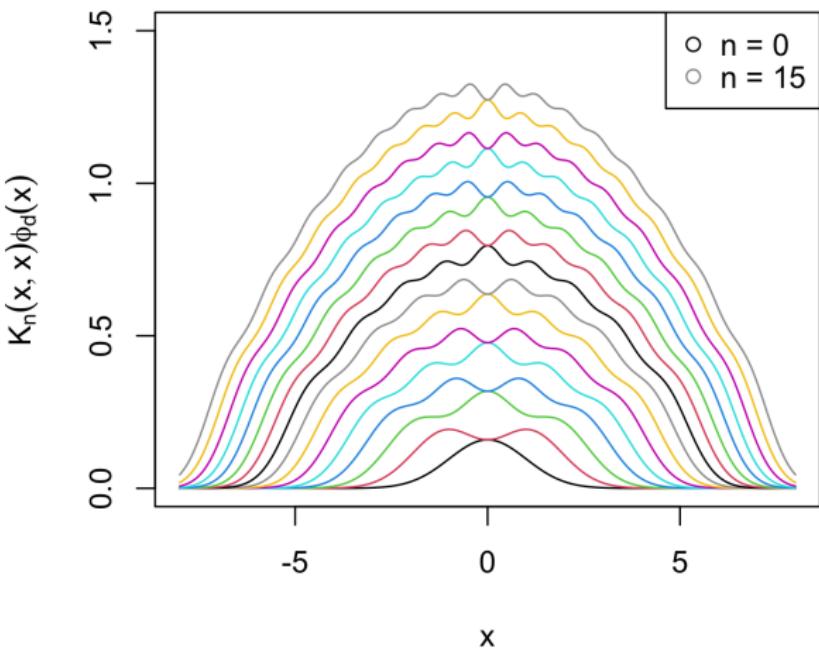
The Semicircle Law

d = 1



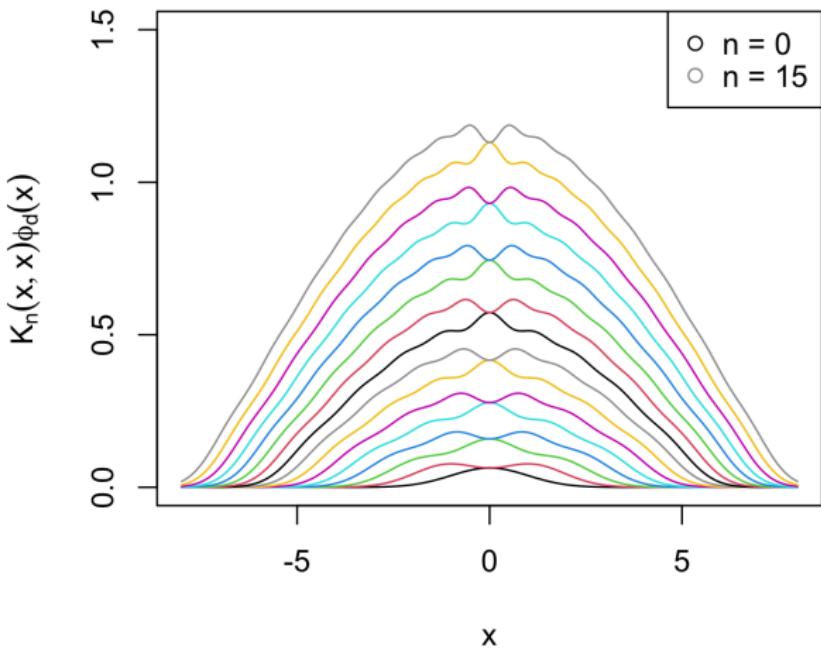
The Semicircle Law

d = 2



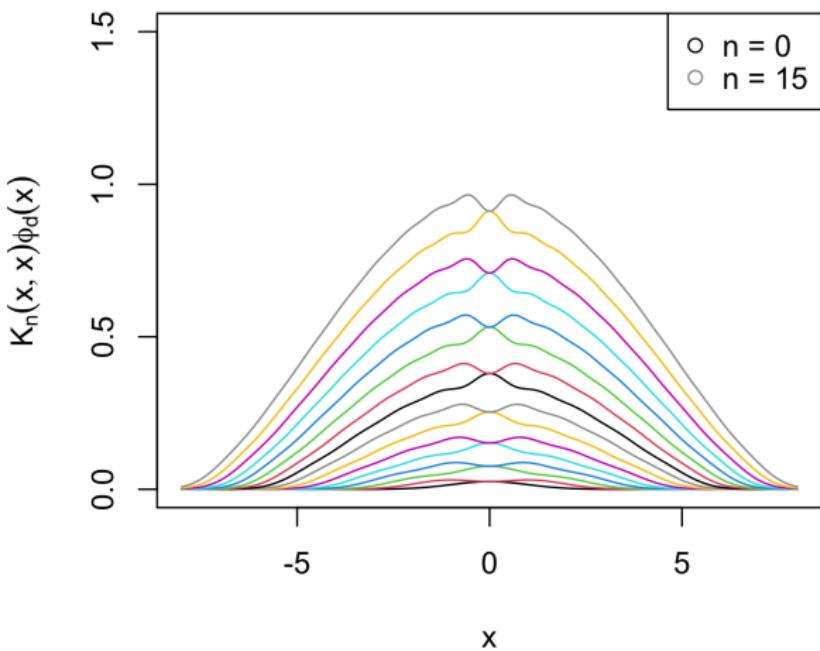
The Semicircle Law

d = 3



The Semicircle Law

d = 4



Technical Details: Propagator and Density Matrix

- To find the explicit constant $c = c(\kappa)$, we consider:

Proposition (Mehler Kernel)

If we define the Mehler kernel by

$M(x, y; t) := \sum_{\mathbf{k} \in \mathbb{N}_0^d} e^{-tE_{\mathbf{k}}} \psi_{\mathbf{k}}(x) \psi_{\mathbf{k}}(y)$ for $t > 0$, then

$$M(x, y; t)$$

$$= (4\pi \sinh(2t))^{-d/2} \exp\left(-\frac{\|x\|_2^2 + \|y\|_2^2}{4 \tanh(2t)} + \frac{\langle x, y \rangle_2}{2 \sinh(2t)}\right).$$

- It suffices to prove this for $d = 1$ thanks to factorization.
- This is an exercise of bivariate Fourier transform (without any background knowledge in physics).
- Using bra-ket notation in physics, nonetheless, we may write

$$M(x, y; t) = \langle x | e^{-t\mathcal{H}} | y \rangle, \quad e^{-t\mathcal{H}} = \sum_{\mathbf{k}} e^{-tE_{\mathbf{k}}} |\psi_{\mathbf{k}}\rangle \langle \psi_{\mathbf{k}}|.$$

Sharpness

Theorem (Sharpness)

There exist two sequences of probability measures $\{\pi_n\}$ and $\{\eta_n\}$ supported on $[-M, M]$ such that, if we define

$$\text{TV}_n := \text{TV}(f_{\pi_n}, f_{\eta_n}), \quad H_n := H(f_{\pi_n}, f_{\eta_n}),$$

then $\text{TV}_n \downarrow 0$ as $n \rightarrow \infty$, and moreover it holds for all n that $\text{TV}_n < e^{-e}$ and that

$$H_n \geq \text{TV}_n^{1-\alpha^*(\text{TV}_n)},$$

where we define

$$\alpha^*(t) := \frac{0.33}{\log \log(1/t)}, \quad t > 0.$$

One-dimensional Result?

Suppose π^* and η^* are supported on \mathbb{R} . Then, we have $\text{TV}(f_\pi, f_\eta) = \text{TV}(f_{\pi^*}, f_{\eta^*})$ and $H(f_\pi, f_\eta) = H(f_{\pi^*}, f_{\eta^*})$ for

$$\pi = \pi^* \otimes \delta_0^{\otimes(d-1)} = \pi^* \otimes \delta_0 \otimes \cdots \otimes \delta_0,$$

$$\eta = \eta^* \otimes \delta_0^{\otimes(d-1)} = \eta^* \otimes \delta_0 \otimes \cdots \otimes \delta_0,$$

where δ_0 denotes the point mass at zero.

- Thus, the sharp example in one dimension immediately implies sharp examples in arbitrary dimensions.

Proof Sketch of the Sharpness

Recall the essential ingredients of the proof of the main theorem:

- The quantity $c_{n,d}$ can be bounded from below by $e^{-O(n)}$;

For $d = 1$, in particular, we note that the sequence of monomials $(x^n)_n$ is a sharp instance of the $c_n (= c_{n,1})$:

Proof Sketch of the Sharpness

Recall the essential ingredients of the proof of the main theorem:

- The quantity $c_{n,d}$ can be bounded from below by $e^{-O(n)}$;
- We can control the tail norm $\|r\|_{L^2(\phi_1)}$ by $e^{-\Omega(n \log n)}$.

For $d = 1$, in particular, we note that the sequence of monomials $(x^n)_n$ is a sharp instance of the $c_n (= c_{n,1})$:

Proof Sketch of the Sharpness

Recall the essential ingredients of the proof of the main theorem:

- The quantity $c_{n,d}$ can be bounded from below by $e^{-O(n)}$;
- We can control the tail norm $\|r\|_{L^2(\phi_1)}$ by $e^{-\Omega(n \log n)}$.

For $d = 1$, in particular, we note that the sequence of monomials $(x^n)_n$ is a sharp instance of the $c_n (= c_{n,1})$:

- The norm ratio $\|x^n\|_{L^1(\phi_1)} / \|x^n\|_{L^2(\phi_1)}$ is decaying exponentially in n .

Proof Sketch of the Sharpness

Recall the essential ingredients of the proof of the main theorem:

- The quantity $c_{n,d}$ can be bounded from below by $e^{-O(n)}$;
- We can control the tail norm $\|r\|_{L^2(\phi_1)}$ by $e^{-\Omega(n \log n)}$.

For $d = 1$, in particular, we note that the sequence of monomials $(x^n)_n$ is a sharp instance of the $c_n (= c_{n,1})$:

- The norm ratio $\|x^n\|_{L^1(\phi_1)} / \|x^n\|_{L^2(\phi_1)}$ is decaying exponentially in n .
- Knowing this fact, given n , we construct an example such that the $L^2(\phi_1)$ projection of $(f_{\pi_n} - f_{\eta_n})/\phi_1$ onto $\Pi_n (= \Pi_n^1)$ is proportional to x^n , i.e.,

$$\sum_{k=0}^n \frac{\Delta_k}{\sqrt{k!}} h_k(x) \propto x^n \iff \Delta_k \propto \begin{cases} \frac{1}{(n-k)!!}, & k \text{ is odd,} \\ 0, & k \text{ is even,} \end{cases}$$

provided that n is odd.

Definition

For a distribution class \mathcal{P} , its (global) Hellinger covering number is defined by

$$N_H(\mathcal{P}, \epsilon) := \min \{N : \exists P_1, \dots, P_N, \sup_{R \in \mathcal{P}} \inf_{1 \leq i \leq N} H(R, P_i) \leq \epsilon\}.$$

The local Hellinger covering number of \mathcal{P} is

$$N_{H,loc}(\mathcal{P}, \epsilon) := \sup_{P \in \mathcal{P}, \eta \geq \epsilon} N_H(B_H(P, \eta), \eta/2),$$

where $B_H(P, \eta) = \{R \in \mathcal{P} : H(P, R) \leq \eta\}$.

Entropic Characterization of Learning in Hellinger

Let $\mathcal{P}_{M,d}$ be our distribution class (Gaussian mixtures with compactly supported mixing distributions).

Proposition (Learning Gaussian mixtures in Hellinger [JPW23])

Suppose \mathcal{P} is a compact subset (in Hellinger) of $\mathcal{P}_{M,d}$. Let $\widehat{P} = \widehat{P}(X_1, \dots, X_n)$ denote an estimator based on X_1, \dots, X_n drawn i.i.d. from $P \in \mathcal{P}$. Then,

$$\begin{aligned} & \inf_{\widehat{P}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[H^2 \left(P, \widehat{P} \right) \right] \\ & \asymp \inf_{\widehat{P} \in \mathcal{P}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[H^2 \left(P, \widehat{P} \right) \right] \asymp \epsilon_n^2, \end{aligned}$$

where

$$\epsilon_n^2 \asymp \inf_{\epsilon > 0} \left(\epsilon^2 + \frac{1}{n} \log N_{H,loc}(\mathcal{P}, \epsilon) \right). \quad (6)$$

Entropic Characterization of Learning in Hellinger

- The upper bound follows from Le Cam-Birgé construction [LeC73, Bir83, Bir86].
- The lower bound follows from Fano's inequality and $H(f_\pi, f_\eta) \asymp \sqrt{\text{KL}(f_\pi \| f_\eta)}$ under $\mathcal{P}_{M,d}$ [JPW23]:

$$\mathbb{P} \left[H(P, \hat{P}) \geq \frac{\epsilon_n}{4} \right] \geq \frac{1}{2}.$$

- By triangular inequality and projection argument, we can restrict \hat{P} to be a proper estimator.

$$\mathbb{P} \left[\text{TV}(P, \hat{P}) \gtrsim \epsilon_n^{1+o(1)} \right] \geq \mathbb{P} \left[H(P, \hat{P}) \geq \frac{\epsilon_n}{4} \right] \geq \frac{1}{2}.$$

Theorem (Learning Gaussian mixtures in total variation)

Under the same conditions as the above, we have

$$\begin{aligned}\epsilon_n^{2\left(1+\frac{\Theta(1)}{\log(\log(1/\epsilon_n)\vee e)}\right)} &\lesssim \inf_{\hat{P}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[\text{TV}^2(P, \hat{P}) \right] \\ &\asymp \inf_{\hat{P} \in \mathcal{P}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[\text{TV}^2(P, \hat{P}) \right] \\ &\lesssim \epsilon_n^2,\end{aligned}$$

where we define ϵ_n as in (6).

- The upper bound is trivial.

Robust Density Estimation

Proposition (Robust density estimation in TV)

Consider the data generating process as follows.

$$X_1, \dots, X_n \stackrel{i.i.d.}{\sim} P := (1 - \epsilon)P_{f_\pi} + \epsilon Q, \quad (7)$$

Then, we have

$$\inf_{\hat{f}} \sup_{\pi, Q} \mathbb{E} \left[\text{TV}^2 \left(f_\pi, \hat{f} \right) \right] \lesssim \epsilon^2 + \frac{\log^{d+1}(n)}{n}, \quad (8)$$

where the expectation is under (7) and the supremum is taken over all Q and π such that $\text{supp}(\pi) \subseteq [-M, M]^d$.

- By Yatracos' construction [Yat85].

Robust Density Estimation

Theorem (Minimax rate of robust density estimation)

Consider the data generating process as in (7). Then, we have

$$\inf_{\hat{f}} \sup_{\pi, Q} \mathbb{E} \left[H^2 \left(f_\pi, \hat{f} \right) \right] \lesssim \mathcal{E}^2(\epsilon, n), \quad (9)$$

where we define

$$\mathcal{E}^2(\epsilon, n) := \epsilon^{2 \left(1 - \frac{\Theta(1)}{\log(\log(1/\epsilon) \vee e)} \right)} + \left(\frac{1}{n} \right)^{1 - o_d(1)}, \quad (10)$$

the expectation is under (7), and the supremum is taken over all Q and π such that $\text{supp}(\pi) \subseteq [-M, M]^d$.

Robust Density Estimation

Theorem (Minimax rate of robust density estimation)

Consider the data generating process as in (7). Then, we have

$$\inf_{\hat{f}} \sup_{\pi, Q} \mathbb{E} \left[H^2 \left(f_\pi, \hat{f} \right) \right] \gtrsim \epsilon^{2 \left(1 - \frac{\Theta(1)}{\log(\log(1/\epsilon) \vee e)} \right)}, \quad (11)$$

where the expectation is under (7) and the supremum is taken over all Q and π such that $\text{supp}(\pi) \subseteq [-M, M]^d$.

- The rate in (10) is minimax optimal in ϵ . It is, indeed, the exact minimax rate in the regime where $n \geq \text{poly}(1/\epsilon)$.

Lemma ([CGR18])

Suppose P_1 and P_2 are probability measures such that $\text{TV}(P_1, P_2) \leq \frac{\epsilon}{1-\epsilon}$. Then, there exist two probability measures Q_1 and Q_2 such that $(1 - \epsilon)P_1 + \epsilon Q_1 = (1 - \epsilon)P_2 + \epsilon Q_2$.

Robust Regret Bound

Theorem (Robust regret bound)

Consider the data generating process as follows.

$$\begin{aligned} X_i &\sim (1 - \epsilon)N(\theta_i, I_d) + \epsilon Q, \\ \theta_1, \dots, \theta_n &\stackrel{i.i.d.}{\sim} \pi. \end{aligned} \tag{12}$$

Then, we have

$$\inf_{\widehat{f}} \sup_{\pi, Q} \mathbb{E} \left[\mathbb{E}_{X \sim f_\pi} \left\| \widehat{\theta}(X) - \widehat{\theta}^*(X) \right\|^2 \right] \lesssim \mathcal{E}^2(\epsilon, n),$$

where the outer expectation is under (12) and the supremum is taken over all Q and π such that $\text{supp}(\pi) \subseteq [-M, M]^d$.

- Inspired by NPMLE papers [JZ09, SG20, SGS25].

Acknowledgements

- I thank Gemini 3 Pro for explaining about basics of quantum mechanics.

Acknowledgements

- I thank Gemini 3 Pro for explaining about basics of quantum mechanics.
- I thank Prof. Chao Gao for continued guidance.

Acknowledgements

- I thank Gemini 3 Pro for explaining about basics of quantum mechanics.
- I thank Prof. Chao Gao for continued guidance.
- I thank Prof. Nikolaos Ignatiadis for fruitful discussions on the implications of our results for empirical Bayes.

Acknowledgements

- I thank Gemini 3 Pro for explaining about basics of quantum mechanics.
- I thank Prof. Chao Gao for continued guidance.
- I thank Prof. Nikolaos Ignatiadis for fruitful discussions on the implications of our results for empirical Bayes.
- I thank you all for listening.

Acknowledgements

- I thank Gemini 3 Pro for explaining about basics of quantum mechanics.
- I thank Prof. Chao Gao for continued guidance.
- I thank Prof. Nikolaos Ignatiadis for fruitful discussions on the implications of our results for empirical Bayes.
- I thank you all for listening.
- I thank my wife.

References I

- Lucien Birgé, *Approximation dans les espaces métriques et théorie de l'estimation*, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete **65** (1983), no. 2, 181–237.
- _____, *On estimating a density using Hellinger distance and some other strange facts*, Probability theory and related fields **71** (1986), no. 2, 271–291.
- Mengjie Chen, Chao Gao, and Zhao Ren, *Robust covariance and scatter matrix estimation under Huber's contamination model*, The Annals of Statistics **46** (2018), no. 5, 1932–1960.
- Sanjoy Dasgupta, *Learning mixtures of Gaussians*, 40th annual symposium on foundations of computer science (Cat. No. 99CB37039), IEEE, 1999, pp. 634–644.

References II

- Victor Guillemin and Shlomo Sternberg, *Semi-classical analysis*, International Press Boston, MA, 2013.
- Subhashis Ghosal and Aad W Van Der Vaart, *Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities*, *The Annals of Statistics* (2001), 1233–1263.
- Christopher R Genovese and Larry Wasserman, *Rates of convergence for the Gaussian mixture sieve*, *The Annals of Statistics* **28** (2000), no. 4, 1105–1127.
- Zeyu Jia, Yury Polyanskiy, and Yihong Wu, *Entropic characterization of optimal rates for learning Gaussian mixtures*, *The Thirty Sixth Annual Conference on Learning Theory*, PMLR, 2023, pp. 4296–4335.

References III

- Wenhua Jiang and Cun-Hui Zhang, *General maximum likelihood empirical Bayes estimation of normal means*, The Annals of Statistics (2009), 1647–1684.
- Arlene KH Kim and Adityanand Guntuboyina, *Minimax bounds for estimating multivariate Gaussian location mixtures*, Electronic Journal of Statistics **16** (2022), no. 1, 1461–1484.
- Lucien LeCam, *Convergence of estimates under dimensionality restrictions*, The Annals of Statistics (1973), 38–53.
- Bruce G Lindsay, *Mixture models: Theory, geometry and applications*, NSF-CBMS Regional Conference Series in Probability and Statistics, JSTOR, 1995, pp. i–163.

References IV

- Sujayam Saha and Adityanand Guntuboyina, *On the nonparametric maximum likelihood estimator for Gaussian location mixture densities with application to Gaussian denoising*, The Annals of Statistics **48** (2020), no. 2, 738–762.
- Jake A Soloff, Adityanand Guntuboyina, and Bodhisattva Sen, *Multivariate, heteroscedastic empirical Bayes via nonparametric maximum likelihood*, Journal of the Royal Statistical Society Series B: Statistical Methodology **87** (2025), no. 1, 1–32.
- Wing Hung Wong and Xiaotong Shen, *Probability inequalities for likelihood ratios and convergence rates of sieve MLEs*, The Annals of Statistics (1995), 339–362.

References V

- Yannis G Yatracos, *Rates of convergence of minimum distance estimators and Kolmogorov's entropy*, The Annals of Statistics **13** (1985), no. 2, 768–774.