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Recap: Gaussian Location Mixtures

We define d-dimensional Gaussian location mixture by

fπ(x) =

∫
Rd

ϕd(x − θ) dπ(θ),

where

ϕd(x) = (2π)−d/2 exp

(
−
∥x∥22
2

)

is the standard Gaussian density.

Nonparametric density estimation;

Bayesian inference;

Clustering [Lin95, Das99].
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Recap: f -Divergences

Recall that, in general, we have

H2(p, q) ≤ TV(p, q) ≤
√
2H(p, q) ≤

√
2KL(p∥q) ≤

√
2χ2(p∥q),

where we define

H2(p, q) :=
1

2

∫
(
√
p −√

q)2,

TV(p, q) :=
1

2

∫
|p − q|,

KL(p∥q) :=
∫

p log
p

q
,

χ2(p∥q) :=
∫

(p − q)2

q
.
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Related Works: Hellinger Distance

The Hellinger distance H is a commonly used loss function for
density estimation as it is useful in Gaussian location mixture
estimation [WS95, KG22].
Why Hellinger? Bounded metric, symmetric, tensorized, etc.

An upper bound on H(fπ, fη) immediately implies an upper
bound on TV(fπ, fη).

H2(fπ, fη) ≤ TV(fπ, fη) ≤
√
2H(fπ, fη).

The Hellinger control has a direct consequence for bounding
the regret of an empirical Bayes estimator, e.g., NPMLE
[GW00, GVDV01, JZ09, SG20, SGS25].
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Related Works: Information Theory

Suppose π([−M,M]d) = η([−M,M]d) = 1 for some M > 0.
Then, fπ and fη satisfy

H(fπ, fη) ≍
√
KL(fπ∥fη),

up to constant factors depending on M and d [JPW23].

This allows an entropic characterization of learning in
Hellinger of Gaussian mixtures (Will be discussed later).

inf
P̂

sup
P∈P

EP

[
H2
(
P, P̂

)]
≍ inf

ϵ>0

ϵ2 + 1

n
logNH,loc(P, ϵ)︸ ︷︷ ︸

local Hellinger entropy

 .
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Resolving an Open Question

Prior to our contribution, it was questioned whether

TV(fπ, fη)
?≍ H(fπ, fη)

holds for Gaussian mixtures [JPW23].

That is,

H(fπ, fη)
?
≤ TV(fπ, fη)

We say NO by proving

H(fπ, fη) ≤ TV(fπ, fη)
1− Θ(1)

log log(1/TV(fπ, fη))

and by constructing a sharp example (πn, ηn)
∞
n=1 of this

inequality.
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Resolving an Open Question

This might be unexpected:
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Our Contribution

When the data set contains a small subset of arbitrary outliers, the
density estimation problem can be regarded as misspecified under
total variation.

Too loose for deriving optimal error rates for robust density
estimation:

H2(fπ, fη) ≤ TV(fπ, fη) ≤
√
2H(fπ, fη).

Our contribution 1: Better inequalities!

H1+o(1)(fπ, fη) ≤ TV(fπ, fη) ≤
√
2H(fπ, fη).

Our contribution 2: The o(1) term is indeed necessary, i.e.,
unimprovable.

Our contribution 3: Implications in robust statistics!
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Preview: Implication I

Theorem (Minimax rate of robust density estimation)

Consider the data generating process as follows.

X1, . . . ,Xn
i .i .d .∼ P := (1− ϵ)Pfπ + ϵQ, (1)

Then, we have

inf
f̂
sup
π,Q

E
[
H2
(
fπ, f̂

)]
≍ ϵ

2
(
1− Θ(1)

log(log(1/ϵ)∨e)

)
, (2)

where the expectation is under (1) and the supremum is taken
over all Q and π such that supp(π) ⊆ [−M,M]d , provided that
the sample size satisfies n ≥ poly(1/ϵ).
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Preview: Implication II

Theorem (Robust regret bound)

Consider the data generating process as follows.

Xi ∼ (1− ϵ)N(θi , Id) + ϵQ, (3)

θ1, . . . , θn
i .i .d .∼ π.

Then, we have

inf
f̂
sup
π,Q

E
[
EX∼fπ

∥∥∥θ̂(X )− θ̂⋆(X )
∥∥∥2]

≲ ϵ
2
(
1− Θ(1)

log(log(1/ϵ)∨e)

)
+

(
1

n

)1−o(1)

,

where the outer expectation is under (3) and the supremum is
taken over all Q and π such that supp(π) ⊆ [−M,M]d .
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Organization

Main Results (Formal)

Proof Technique: Hermite Polynomials
Physical Interpretation: Quantum Harmonic Oscillator

Sharpness Results (Formal)

Applications

Entropic Characterization of Learning in Total Variation
Robust Density Estimation
Robust Regret Bound in Empirical Bayes
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Main Result (Hellinger distance)

What we want to show:

Corollary (Inequality between TV and Hellinger distances)

Let π and η be probability measures supported on the
d-dimensional cube [−M,M]d . Let δ > 0. Then, there exists
C0 = C0(δ,M, d) > 0, not depending on π or η, such that

H(fπ, fη) ≤
(
C0 ∨ TV−α(TV(fπ ,fη))(fπ, fη)

)
TV(fπ, fη),

where we define

α(t) :=
2 + δ

log (log(1/t) ∨ e)
, (4)

for t > 0.

Joonhyuk Jung Sharp Inequalities between TV and Hellinger Distances for Gaussian Mixtures 14



Main Theorem (χ2-divergence)

The above corollary follows immediately from our main theorem:

Theorem (Inequality between TV distance and χ2-divergence)

Let π and η be probability measures supported on the
d-dimensional cube [−M,M]d . Let δ > 0. Then, there exists
C0 = C0(δ,M, d) > 0, not depending on π or η, such that√

χ2(fπ∥fη) ≤
(
C0 ∨ TV−α(TV(fπ ,fη))(fπ, fη)

)
TV(fπ, fη),

where we define α(·) as in (4).
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Stronger Main Theorem (L2(ϕd)-norm)

We indeed prove a stronger result.

Theorem (Inequality between L1(ϕd) and L2(ϕd) norms)

Let π and η be probability measures supported on the
d-dimensional cube [−2M, 2M]d . Let δ > 0. Then, there exists
C0 = C0(δ,M, d) > 0, not depending on π or η, such that√∫

(fπ − fη)2

ϕd
≤
(
C0 ∨ TV−α(TV(fπ ,fη))(fπ, fη)

)
TV(fπ, fη),

where we define α(·) as in (4).
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Why Stronger?

Remark

Let us define g :=
fπ−fη
ϕd

. Then, we have

∥g∥L2(ϕd )
=

√∫
Rd

|g |2ϕd =

√∫
Rd

(fπ − fη)2

ϕd
,

∥g∥L1(ϕd )
=

∫
Rd

|g |ϕd =

∫
Rd

|fπ − fη| = 2TV(fπ, fη).

Moreover, by convexity argument (Jensen and Fubini-Tonelli),

χ2(fπ∥fη) =
∫
Rd

(fπ − fη)
2

fη
≤ sup

θ∈[−M,M]d

∫
Rd

(fπ(x)− fη(x))
2

ϕd(x − θ)
dx .

It only remains to bound ∥g∥L2(ϕd )
from above by ∥g∥L1(ϕd )

.
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Hermite Polynomial Expansion

Lemma (Hermite polynomial expansion)

For θ = (θ1, . . . , θd) ∈ Rd and x = (x1, . . . , xd) ∈ Rd , we have

ϕd(x − θ)

ϕd(x)
=
∑
k∈Nd

0

θk√
k!
hk(x),

where we define

θk :=
d∏

j=1

θ
kj
j , k! :=

d∏
j=1

kj !, hk(x) :=
d∏

j=1

hkj (xj).

{hk : k ∈ Nd
0} is an orthonormal basis of L2(ϕd).

For d = 1 and k ∈ N0, we define hk(x) :=
(−1)k√
k!ϕ1(x)

dk

dxk
ϕ1(x).
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Hermite Polynomial Expansion

Lemma (Hermite polynomial expansion)

That is,

g(x) :=
fπ(x)− fη(x)

ϕd(x)
=
∑
k∈Nd

0

∆k√
k!
hk(x),

where

∆k =

∫
Rd

θk d(π − η)(θ).

is the difference in k-th moments between π and η.

By Parseval’s theorem, ∥g∥2L2(ϕd )
=
∑

k∈Nd
0

∆2
k

k! .
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Extremal Problem

Recall that we want to bound ∥g∥L2(ϕd )
from above by ∥g∥L1(ϕd )

.

What if we consider a proper subspace of L2(ϕd)?

Definition (Extremal problem)

Define

cn,d := inf
{
∥P∥L1(ϕd )

: P ∈ Πd
n , ∥P∥L2(ϕd )

= 1
}
, (5)

where Πd
n is the set of real polynomials of total degree ≤ n in d

variables.

{hk : k ∈ Nd
0 , |k| ≤ n} is an orthonormal basis of the

finite-dimensional subspace Πd
n ≤ L2(ϕd).

|k| := k1 + · · ·+ kd , dimΠd
n =

(n+d
n

)
.
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Proof Sketch of the Main Theorem (L2(ϕd)-norm)
We decompose g = q + r , where

q =
∑
|k|≤n

∆k√
k!
hk ∈ Πd

n , r =
∑
|k|>n

∆k√
k!
hk.

Then,

∥g∥L1(ϕd )
≥ ∥q∥L1(ϕd )

− ∥r∥L1(ϕd )

≥ cn,d ∥q∥L2(ϕd )
− ∥r∥L2(ϕd )

≥ cn,d︸︷︷︸
e−O(n)

∥g∥L2(ϕd )
− 2 ∥r∥L2(ϕd )︸ ︷︷ ︸

O

(
e−

n log n
2

) . (∵ cn,d ≤ 1)

Hence, we choose

n ≈
2 log(1/ ∥g∥L1(ϕd )

)

log log(1/ ∥g∥L1(ϕd )
)
.
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Lower Bound on cn,d

We now proceed to prove cn,d = e−O(n):

Proposition (Asymptotic lower bound on cn,d)

Suppose κ1 > 1. Then, there exists a constant A1 = A1(κ1),
depending only on κ1, such that, if n ≥ A1d, then we have
cn,d ≥ 3e−κ1n. That is, for all P ∈ Πd

n ,

∥P∥L1(ϕd )
≥ 3e−κ1n ∥P∥L2(ϕd )

.
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Lower Bound on cn,d (Two Ingredients)

Proposition (Nikolskii-type inequality)

For all P ∈ Πd
n , we have

sup
x∈Rd

∣∣∣P(x)ϕ1/2d (x)
∣∣∣ ≤ ((n + d)n+d

nn(2πd)d

)1/4

∥P∥L2(Rd ,ϕd )
.

Proposition (Restricted-range inequality)

Write En,d := 2n + d. Suppose κ > 1. Then, there exists a
constant A = A(κ), depending only on κ, such that, if En,d ≥ Ad,
then, for all P ∈ Πd

n , we have∫
∥x∥2>

√
2κEn,d

P2(x)ϕd(x) ≤
1

2
∥P∥2L2(Rd ,ϕd )

.
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Lower Bound on cn,d (Combining the Ingredients)

For large enough n, every P ∈ Πd
n satisfies

∥P∥2L2(Rd ,ϕd )

≤ 2

∫
∥x∥2≤

√
2κEn,d

P2(x)ϕd(x) (by Restricted-range inequality)

≤ 2 sup
∥x∥2≤

√
2κEn,d

∣∣∣ϕ−1/2
d (x)

∣∣∣ sup
x∈Rd

∣∣∣P(x)ϕ1/2d (x)
∣∣∣ ∫

Rd

|Pϕd |

≤ 2
(
(2π)d/4eκEn,d/2

)((n + d)n+d

nn(2πd)d

)1/4

∥P∥L2(Rd ,ϕd )
∥P∥L1(Rd ,ϕd )

(by Nikolskii-type inequality)

≤ 1

3
eκ1n ∥P∥L2(Rd ,ϕd )

∥P∥L1(Rd ,ϕd )
. (1 < κ < κ1)
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Lower Bound on cn,d (Discussion)
Let us consider the meaning of the restricted-range inequality.

Proposition (Restricted-range inequality (Stronger version))

Write En,d := 2n + d. Suppose κ > 1. Then, there exist positive
constants A = A(κ) and c = c(κ), depending only on κ, such that,
if En,d ≥ Ad, then, for all P ∈ Πd

n , we have∫
∥x∥2>

√
2κEn,d

P2(x)ϕd(x) ≤ e−cEn,d ∥P∥2L2(Rd ,ϕd )
.

Statisticians: The Gaussian tail is sufficiently light to bound
any polynomial within a restricted range: ∥x∥2 ≤

√
2κEn,d .

Physicists: In the semi-classical regime (En,d → ∞), the
probability mass in the classically forbidden region becomes
negligible.

En,d is the energy; {∥x∥2 >
√
2En,d} is the forbidden region.
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Physical Interpretation

A classical Hamiltonian of a particle in Rd :

Hcl =
1

2
∥ξ∥22 + V (x)

=
1

2
∥ξ∥22︸ ︷︷ ︸

kinetic energy

+
1

2
∥x∥22︸ ︷︷ ︸

potential energy

.

Given the energy level E , ∥x∥2 >
√
2E is forbidden in classical

physics. We do not allow the kinetic energy to be negative.

Joonhyuk Jung Sharp Inequalities between TV and Hellinger Distances for Gaussian Mixtures 26



Quantum Harmonic Oscillator

A classical Hamiltonian of a particle in Rd :

Hcl =
1

2
∥ξ∥22 + V (x)

=
1

2
∥ξ∥22︸ ︷︷ ︸

kinetic energy

+
1

2
∥x∥22︸ ︷︷ ︸

potential energy

.

The quantum-mechanical analog:

H = −ℏ2

2
∇2 + V

ψ 7→ −ℏ2

2

(
∂2

∂x21
+ · · ·+ ∂2

∂x2d

)
ψ +

1

2

(
x21 + · · ·+ x2d

)
ψ.

ℏ > 0 is the Planck constant.
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Schrödinger Equation

Quantum harmonic oscillators ψ are characterized as the
eigenvectors (eigenfunctions) of H = −ℏ2

2 ∇
2 + V :

Hψ = Eψ.

E > 0, the energy level, is the corresponding eigenvalue.

The above equation is known as (time-independent)
Schrödinger equation.
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Schrödinger Equation (Solutions)

If ℏ = 2, in particular, ψk = hkϕ
1/2
d satisfies Hψk = Ekψk.

Note that ψk is called the k-th Hermite function,

where hk is the k-th Hermite polynomial in Rd and
Ek = 2|k|+ d for state k ∈ Nd

0 .

∥ψk∥L2(Rd ) = ∥hk∥L2(Rd ,ϕd )
= 1.

ψ2
k(x) explains the spatial density of states (DOS) for x ∈ Rd .

Relation to the restricted-range inequality?

Proposition (Restricted-range inequality (Stronger version))

∫
∥x∥2>

√
2κEn,d

P2(x)ϕd(x) ≤ e−cEn,d ∥P∥2L2(Rd ,ϕd )
.
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Lower Bound on cn,d (Proof 1/2)

Proof.

For P ∈ Πd
n , write P =

∑
|k|≤n ckhk and∫

∥x∥2>
√

2κEn,d

P2(x)ϕd(x) =
∑
|k|≤n

∑
|l|≤n

ckMklcl

≤ tr(M)
∑
|k|≤n

c2k

= tr(M) ∥P∥2L2(Rd ,ϕd )
,

where M = (Mkl)k,l is a (dimΠd
n)× (dimΠd

n) p.s.d. matrix with

Mkl :=

∫
∥x∥2>

√
2κEn,d

ψk(x)ψl(x)︸ ︷︷ ︸
hk(x)hl(x)ϕd (x)

.
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Lower Bound on cn,d (Proof 2/2)

Continued.

Recall that En,d = 2n+ d and that Ek = 2|k|+ d . It hence suffices
to prove the following inequality:

tr(M) =
∑
|k|≤n

Mkk =

∫
∥x∥2>

√
2κEn,d

∑
Ek≤En,d

ψ2
k(x)

?
≤ e−cEn,d .

Proposition (Local Weyl Law [GS13])

∑
Ek≤En,d

ψ2
k(x)

En,d→∞
−→ (4π)−d

∫
Hcl≤En,d

dξ

=(4π)−dωd

(
2En,d − ∥x∥22

)d/2
.
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The Semicircle Law
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The Semicircle Law
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The Semicircle Law
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The Semicircle Law

Joonhyuk Jung Sharp Inequalities between TV and Hellinger Distances for Gaussian Mixtures 35



Technical Details: Propagator and Density Matrix
To find the explicit constant c = c(κ), we consider:

Proposition (Mehler Kernel)

If we define the Mehler kernel by
M(x , y ; t) :=

∑
k∈Nd

0
e−tEkψk(x)ψk(y) for t > 0, then

M(x , y ; t)

= (4π sinh(2t))−d/2 exp

(
−
∥x∥22 + ∥y∥22
4 tanh(2t)

+
⟨x , y⟩2

2 sinh(2t)

)
.

It suffices to prove this for d = 1 thanks to factorization.
This is an exercise of bivariate Fourier transform (without any
background knowlege in physics).
Using bra-ket notation in physics, nonetheless, we may write

M(x , y ; t) = ⟨x |e−tH|y⟩, e−tH =
∑
k

e−tEk |ψk⟩⟨ψk|.
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Sharpness

Theorem (Sharpness)

There exist two sequences of probability measures {πn} and {ηn}
supported on [−M,M] such that, if we define

TVn := TV(fπn , fηn), Hn := H(fπn , fηn),

then TVn ↓ 0 as n → ∞, and moreover it holds for all n that
TVn < e−e and that

Hn ≥ TV
1−α∗(TVn)
n ,

where we define

α∗(t) :=
0.33

log log(1/t)
, t > 0.
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One-dimensional Result?

Suppose π⋆ and η⋆ are supported on R. Then, we have
TV(fπ, fη) = TV(fπ⋆ , fη⋆) and H(fπ, fη) = H(fπ⋆ , fη⋆) for

π = π⋆ ⊗ δ
⊗(d−1)
0 = π⋆ ⊗ δ0 ⊗ · · · ⊗ δ0,

η = η⋆ ⊗ δ
⊗(d−1)
0 = η⋆ ⊗ δ0 ⊗ · · · ⊗ δ0,

where δ0 denotes the point mass at zero.

Thus, the sharp example in one dimension immediately implies
sharp examples in arbitrary dimensions.
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Proof Sketch of the Sharpness
Recall the essential ingredients of the proof of the main theorem:

The quantity cn,d can be bounded from below by e−O(n);

We can control the tail norm ∥r∥L2(ϕ1)
by e−Ω(n log n).

For d = 1, in particular, we note that the sequence of monomials
(xn)n is a sharp instance of the cn(= cn,1):

The norm ratio ∥xn∥L1(ϕ1)
/ ∥xn∥L2(ϕ1)

is decaying
exponentially in n.

Knowing this fact, given n, we construct an example such that
the L2(ϕ1) projection of (fπn − fηn)/ϕ1 onto Πn(= Π1

n) is
proportional to xn, i.e.,

n∑
k=0

∆k√
k!

hk(x) ∝ xn ⇐⇒ ∆k ∝


1

(n − k)!!
, k is odd,

0, k is even,

provided that n is odd.
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Robust Density Estimation

Definition

For a distribution class P, its (global) Hellinger covering number is
defined by

NH(P, ϵ) := min {N : ∃P1, . . . ,PN ,

sup
R∈P

inf
1≤i≤N

H(R,Pi ) ≤ ϵ} .

The local Hellinger covering number of P is

NH,loc(P, ϵ) := sup
P∈P,η≥ϵ

NH(BH(P, η), η/2),

where BH(P, η) = {R ∈ P : H(P,R) ≤ η}.
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Entropic Characterization of Learning in Hellinger
Let PM,d be our distribution class (Gaussian mixtures with
compactly supported mixing distributions).

Proposition (Learning Gaussian mixtures in Hellinger [JPW23])

Suppose P is a compact subset (in Hellinger) of PM,d . Let

P̂ = P̂(X1, . . . ,Xn) denote an estimator based on X1, . . . ,Xn

drawn i.i.d. from P ∈ P. Then,

inf
P̂

sup
P∈P

EP

[
H2
(
P, P̂

)]
≍ inf

P̂∈P
sup
P∈P

EP

[
H2
(
P, P̂

)]
≍ ϵ2n,

where

ϵ2n ≍ inf
ϵ>0

(
ϵ2 +

1

n
logNH,loc(P, ϵ)

)
. (6)
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Entropic Characterization of Learning in Hellinger

The upper bound follows from Le Cam-Birgé construction
[LeC73, Bir83, Bir86].

The lower bound follows from Fano’s inequality and
H(fπ, fη) ≍

√
KL(fπ∥fη) under PM,d [JPW23]:

P
[
H
(
P, P̂

)
≥ ϵn

4

]
≥ 1

2
.

By triangular inequality and projection argument, we can
restrict P̂ to be a proper estimator.

P
[
TV

(
P, P̂

)
≳ ϵ

1+o(1)
n

]
≥ P

[
H
(
P, P̂

)
≥ ϵn

4

]
≥ 1

2
.
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Entropic Characterization of Learning in TV

Theorem (Learning Gaussian mixtures in total variation)

Under the same conditions as the above, we have

ϵ
2
(
1+ Θ(1)

log(log(1/ϵn)∨e)

)
n ≲ inf

P̂
sup
P∈P

EP

[
TV2

(
P, P̂

)]
≍ inf

P̂∈P
sup
P∈P

EP

[
TV2

(
P, P̂

)]
≲ ϵ2n,

where we define ϵn as in (6).

The upper bound is trivial.
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Robust Density Estimation

Proposition (Robust density estimation in TV)

Consider the data generating process as follows.

X1, . . . ,Xn
i .i .d .∼ P := (1− ϵ)Pfπ + ϵQ, (7)

Then, we have

inf
f̂
sup
π,Q

E
[
TV2

(
fπ, f̂

)]
≲ ϵ2 +

logd+1(n)

n
, (8)

where the expectation is under (7) and the supremum is taken
over all Q and π such that supp(π) ⊆ [−M,M]d .

By Yatracos’ construction [Yat85].
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Robust Density Estimation

Theorem (Minimax rate of robust density estimation)

Consider the data generating process as in (7). Then, we have

inf
f̂
sup
π,Q

E
[
H2
(
fπ, f̂

)]
≲ E2(ϵ, n), (9)

where we define

E2(ϵ, n) := ϵ
2
(
1− Θ(1)

log(log(1/ϵ)∨e)

)
+

(
1

n

)1−od (1)

, (10)

the expectation is under (7), and the supremum is taken over all Q
and π such that supp(π) ⊆ [−M,M]d .
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Robust Density Estimation

Theorem (Minimax rate of robust density estimation)

Consider the data generating process as in (7). Then, we have

inf
f̂
sup
π,Q

E
[
H2
(
fπ, f̂

)]
≳ ϵ

2
(
1− Θ(1)

log(log(1/ϵ)∨e)

)
, (11)

where the expectation is under (7) and the supremum is taken
over all Q and π such that supp(π) ⊆ [−M,M]d .

The rate in (10) is minimax optimal in ϵ. It is, indeed, the
exact minimax rate in the regime where n ≥ poly(1/ϵ).

Lemma ([CGR18])

Suppose P1 and P2 are probability measures such that
TV(P1,P2) ≤ ϵ

1−ϵ . Then, there exist two probability measures Q1

and Q2 such that (1− ϵ)P1 + ϵQ1 = (1− ϵ)P2 + ϵQ2.
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Robust Regret Bound

Theorem (Robust regret bound)

Consider the data generating process as follows.

Xi ∼ (1− ϵ)N(θi , Id) + ϵQ, (12)

θ1, . . . , θn
i .i .d .∼ π.

Then, we have

inf
f̂
sup
π,Q

E
[
EX∼fπ

∥∥∥θ̂(X )− θ̂⋆(X )
∥∥∥2] ≲ E2(ϵ, n),

where the outer expectation is under (12) and the supremum is
taken over all Q and π such that supp(π) ⊆ [−M,M]d .

Ispired by NPMLE papers [JZ09, SG20, SGS25].
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