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Recap: Gaussian Location Mixtures

We define d-dimensional Gaussian location mixture by
fr(x) = dd(x — 0) dn(0),
Rd

where
2
da(x) = (2m) "% exp (_”)(2H2>

is the standard Gaussian density.
m Nonparametric density estimation;
m Bayesian inference;
m Clustering [Lin95, Das99].
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Recap: f-Divergences

Recall that, in general, we have

H?(p,q) < TV(p,q) < V2H(p, q) < v/2KL(p|lq) < /2x2(pl 9),

where we define

H(p.a)i= 5 [ (Vo VP,

q) 122/\p—q\,

p
KL(p[lq) == / plog 2,
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Related Works: Hellinger Distance

The Hellinger distance H is a commonly used loss function for
density estimation as it is useful in Gaussian location mixture
estimation [WS95, KG22].

Why Hellinger? Bounded metric, symmetric, tensorized, etc.

m An upper bound on H(f:, f,) immediately implies an upper
bound on TV(fy, f,).

H?(fr, £,) < TV(fr, f;) < V2H(fr, ).
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Related Works: Hellinger Distance

The Hellinger distance H is a commonly used loss function for
density estimation as it is useful in Gaussian location mixture
estimation [WS95, KG22].

Why Hellinger? Bounded metric, symmetric, tensorized, etc.

m An upper bound on H(f:, f,) immediately implies an upper
bound on TV(fy, f,).

H?(fr, £,) < TV(fr, f;) < V2H(fr, ).

m The Hellinger control has a direct consequence for bounding
the regret of an empirical Bayes estimator, e.g., NPMLE
[GWO00, GVDV01, JZ09, SG20, SGS25].

Joonhyuk Jung Sharp Inequalities between TV and Hellinger Distances for Gaussian Mixtures



Related Works: Information Theory

Suppose 7([-M, M]?) = n([-M, M]¢) = 1 for some M > 0.
Then, f; and f, satisfy

H(fx, f,) < \/KL(f||f),

up to constant factors depending on M and d [JPW23|.

m This allows an entropic characterization of learning in
Hellinger of Gaussian mixtures (Will be discussed later).

ir,];f EE?DEP [Hz (P, ﬁ)} =

1
inf | €2+ = log Ny joc(P, €)
e>0 n ~— 1 " 7

local Hellinger entropy
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Resolving an Open Question

m Prior to our contribution, it was questioned whether
TV(£., £) = H(fs, £,)

holds for Gaussian mixtures [JPW23].
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Resolving an Open Question
m Prior to our contribution, it was questioned whether
TV(£., £) = H(fs, £,)
holds for Gaussian mixtures [JPW23].
m That is,

?
H(fx, f,) < TV(fr, £;)

m We say NO by proving
. e(1)
H(fﬂ—, f'r]) < TV(fﬂ—, f'r]) |Og |Og(1/TV(fﬂ—, fn))

and by constructing a sharp example (7, 7,)52; of this
inequality.
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Resolving an Open Question

This might be unexpected:

Re: TV and H for Gaussian mixtures o @ S &K &

O Yury Polyanskiy <polyanskiy@gmail.com> Yesterday at 9:56 AM

YP

To: ® Chao Gao; Cc: zyjia@mit.edu; yihong.wu@yale.edu;

Ah, cool result! Thanks Chao and Joonhyuk. I didn't
expect H\asymp TV is wrong.
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Our Contribution

When the data set contains a small subset of arbitrary outliers,
density estimation problem can be regarded as misspecified under
total variation.

m Too loose for deriving optimal error rates for robust density
estimation:

H?(fr, £,) < TV(fr, f,) < V2H(fr, £).
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When the data set contains a small subset of arbitrary outliers,
density estimation problem can be regarded as misspecified under
total variation.
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estimation:
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HY* O () < TV(fr, £)) < V2H(fy, ).
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unimprovable.

Joonhyuk Jung Sharp Inequalities between TV and Hellinger Distances for Gaussian Mixtures 10



Our Contribution

When the data set contains a small subset of arbitrary outliers,
density estimation problem can be regarded as misspecified under
total variation.

m Too loose for deriving optimal error rates for robust density
estimation:

H?(fr, £,) < TV(fr, f,) < V2H(fr, £).
m Our contribution 1: Better inequalities!
HY* O () < TV(fr, £)) < V2H(fy, ).

m Our contribution 2: The o(1) term is indeed necessary, i.e.,
unimprovable.

m Our contribution 3: Implications in robust statistics!
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Preview: Implication |

Theorem (Minimax rate of robust density estimation)

Consider the data generating process as follows.
Xi, .o Xy K= (1 —€)Pr, +€Q, (1)
Then, we have

~ _ o)
infsupE [H2 <f,r, f)] = €2<1 Iog(wg(l/e)VE)), (2)
f mQ
where the expectation is under (1) and the supremum is taken
over all @ and 7 such that supp(n) C [~M, M]9, provided that
the sample size satisfies n > poly(1/e).
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Preview: Implication Il
Theorem (Robust regret bound)

Consider the data generating process as follows.

x

2
Q. —~
—

|
U
=
>
&
+
o)

Then, we have

infsupE [Efow

f m,Q
1-o0(1)
e
< 62(1 |og(|og(1/6)\/e)> + <1> ,

A(X) — 5*()0”2]

~

where the outer expectation is under (3) and the supremum is
taken over all Q and 7 such that supp(r) C [-M, M]?.
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Organization

m Main Results (Formal)

m Proof Technique: Hermite Polynomials

m Physical Interpretation: Quantum Harmonic Oscillator
m Sharpness Results (Formal)
m Applications

m Entropic Characterization of Learning in Total Variation
m Robust Density Estimation
m Robust Regret Bound in Empirical Bayes
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Main Result (Hellinger distance)

What we want to show:

Corollary (Inequality between TV and Hellinger distances)

Let w and 1 be probability measures supported on the
d-dimensional cube [-M, M]9. Let 6 > 0. Then, there exists
Co = Co(0, M, d) > 0, not depending on 7 or ), such that

H(fﬂ-, ﬁ7) S (CO vV r:[\\/'—CM(TV(fﬂ-,f’f]))(fﬂ_7 f:’7)> TV(fﬂ_, fn)’

where we define

245
) = o llog(1/0) vV &)’ “

for t > 0.
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Main Theorem (y?-divergence)

The above corollary follows immediately from our main theorem:

Theorem (Inequality between TV distance and x2-divergence)

Let w and n be probability measures supported on the
d-dimensional cube [-M,M]?. Let § > 0. Then, there exists
Co = Co(0, M, d) > 0, not depending on 7 or 1, such that

56 < (Gov TV oV (£ £)) TV(E £),

where we define o(-) as in (4).
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Stronger Main Theorem (L?(¢¢)-norm)

We indeed prove a stronger result.

Theorem (Inequality between L*(¢,) and L?(¢4) norms)

Let m and n be probability measures supported on the
d-dimensional cube [~2M,2M]9. Let § > 0. Then, there exists
Co = Co(0, M, d) > 0, not depending on 7 orn, such that

fr — £,)2 .
/ | ¢d") < (Co v TV VR £)) TV (S £

where we define a(-) as in (4).
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Why Stronger?

Remark

Let us define g := fq;f”. Then, we have

pr%y—¢/|m¢d ¢/

mmwﬂzéﬁm@:A;m—@hﬂTwmay

Moreover, by convexity argument (Jensen and Fubini-Tonelli),

iy [ ) ()~ (0P
x(un>léd,%<%;ﬁwtéd b BB 4

m It only remains to bound ||g|| 2(4,) from above by ||g||,1(,,)-
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Hermite Polynomial Expansion

Lemma (Hermite polynomial expansion)

For 6 = (61,...,04) € RY andx:(xl,...,xd)eRd, we have

¢a(x —0
¢d(X kZNd

where we define

d d
=[I¢° w=[[K" ()=
j=1 j=1

||EQ.

m {he : k € N} is an orthonormal basis of L?(¢y).

m For d =1 and k € Ny, we define hy(x) := \(F(;)(k )d—kqbl(x).
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Hermite Polynomial Expansion

Lemma (Hermite polynomial expansion)

That is,
LR -A0) - B,
0= 2 v
where
A= | 6%d(m —n)(b).

Rd

is the difference in k-th moments between w and 1.

2
m By Parseval’s theorem, ||g\|%2(¢d) = ZkeNg %.
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Extremal Problem

Recall that we want to bound ||g|| 2(4,) from above by ||g||;1(4,)-
What if we consider a proper subspace of L?(¢4)?

Definition (Extremal problem)
Define

Cn,d = inf {||P\|L1(¢d) - Pend, ||P||L2(¢d) = 1} ; (5)

where M9 is the set of real polynomials of total degree < nin d
variables.

m {h:k € Ng, |k| < n} is an orthonormal basis of the
finite-dimensional subspace M9 < [2(¢q).

m k| =k + -+ kg, dimNg = (1),

n
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Proof Sketch of the Main Theorem (L?(¢4)-norm)

We decompose g = q + r, where

Ak d Ak
qg= —h € M7, r= Z — hy.
k|<n \/H |k|>n \/E

Then,

181l 2 (p0) = lall 2o,y = N llizgsy)
> cnd 19l 2(py) = Irlli2(gy)

2 Cnd ||g||L2(¢d) -2 Hf”L2(¢d) : (g <1)
o o)
e

Hence, we choose

. 2log(1/ ll&ll 2 (gy)
log log(1/ HgHLl((bd))'
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Lower Bound on ¢, 4

We now proceed to prove ¢, g = e 0.

Proposition (Asymptotic lower bound on ¢, 4)

Suppose k1 > 1. Then, there exists a constant A1 = Ai1(k1),
depending only on k1, such that, if n > Aid, then we have
Cnd > 3e ™" That is, for all P € ne,

1Pl 2(pg) = 3€7 1Pl 25,) -
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Lower Bound on ¢, 4 (Two Ingredients)

Proposition (Nikolskii-type inequality)

For all P € I'Ig, we have

1/2 (n+d)™ v p
(| < (e DT e ) NPl

sup
x€Rd

Proposition (Restricted-range inequality)

Write Ep 4 := 2n+ d. Suppose k > 1. Then, there exists a
constant A = A(k), depending only on k, such that, if E, 4 > Ad,
then, for all P € I_Iﬁ,’, we have

1
P2(X)¢d(X) < 2 ||PH%2(R",¢CI)'

/”X||2 > V 2“En,d
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Lower Bound on ¢, 4 (Combining the Ingredients)

For large enough n, every P € MY satisfies

2
1Pl 2(rd 6y

< 2/ P?(x)¢4(x) (by Restricted-range inequality)
lIxlla<+/2KEp,g

<2 s [0, (0] sup PG00l 00| [ 1Pod
Ixll2< /2K Epa xeRd

1/4
. (n+ d)n+d
<2((@mltentesl?) <(2d) IPlliz(ee ) 1P iges

(by Nikolskii-type inequality)

< 2 € IPlara g 1Pl 1(ra 6,) - (I <k < k1)

UJ\I—‘
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Lower Bound on ¢, 4 (Discussion)

Let us consider the meaning of the restricted-range inequality.

Proposition (Restricted-range inequality (Stronger version))

Write E, 4 := 2n+ d. Suppose k > 1. Then, there exist positive
constants A = A(k) and ¢ = ¢(k), depending only on k, such that,
if Eng > Ad, then, for all P € N9, we have

nt

P?(x)pg(x) < e End ||'D”%2(Rd,¢d)'

/X2> \Y4 2”En,d

m Statisticians: The Gaussian tail is sufficiently light to bound
any polynomial within a restricted range: || x|, < \/2kEp g.
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Lower Bound on ¢, 4 (Discussion)

Let us consider the meaning of the restricted-range inequality.

Proposition (Restricted-range inequality (Stronger version))

Write E, 4 := 2n+ d. Suppose k > 1. Then, there exist positive
constants A = A(k) and ¢ = ¢(k), depending only on k, such that,
if Eng > Ad, then, for all P € N9, we have

nt

P?(x)pg(x) < e End ||'D”%2(]Rd,¢d)'

/X2> \Y4 2”En,d

m Statisticians: The Gaussian tail is sufficiently light to bound
any polynomial within a restricted range: || x|, < \/2kEp g.
m Physicists: In the semi-classical regime (E, 4 — 00), the

probability mass in the classically forbidden region becomes
negligible.
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Lower Bound on ¢, 4 (Discussion)

Let us consider the meaning of the restricted-range inequality.

Proposition (Restricted-range inequality (Stronger version))

Write E, 4 := 2n+ d. Suppose k > 1. Then, there exist positive
constants A = A(k) and ¢ = ¢(k), depending only on k, such that,
if Eng > Ad, then, for all P € N9, we have

nt

P2(x)ba(x) < e End [|P|20ma ) -
/x2>\/m (B9 64)

m Statisticians: The Gaussian tail is sufficiently light to bound
any polynomial within a restricted range: || x|, < \/2kEp g.

m Physicists: In the semi-classical regime (E, 4 — 00), the
probability mass in the classically forbidden region becomes
negligible.

m E, 4 is the energy; {||x||, > \/2E, 4} is the forbidden region.
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Physical Interpretation

m A classical Hamiltonian of a particle in R9:

1
Ha =5 €3+ V()

L2 1,2
= 5 1€l + 5 [[x113
N—— S~——

kinetic energy  potential energy

m Given the energy level E, ||x||, > V2E is forbidden in classical
physics. We do not allow the kinetic energy to be negative.
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Quantum Harmonic Oscillator

m A classical Hamiltonian of a particle in R9:

1
Ha =5 [1€]5+ V(%)

1

L2 2
= 5 1€ll2 + 5 [[x]]5
—_——

kinetic energy  potential energy

Joonhyuk Jung
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Quantum Harmonic Oscillator

m A classical Hamiltonian of a particle in R9:

1
Ha = 5 €13+ V()

1

L2 2
= 5 1€ll2 + 5 [[x]]5
—_——

kinetic energy  potential energy

m The quantum-mechanical analog:

h2
H = —7v2 +V
n? [ 92 g

1 2 2
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Quantum Harmonic Oscillator

m A classical Hamiltonian of a particle in R9:

1
Ha = 5 €13+ V()

1

L2 2
= 5 1€ll2 + 5 [[x]]5
—_——

kinetic energy  potential energy

m The quantum-mechanical analog:

h2
w2 [ 02 82 1, ,
vy <8x%+"'+ax3>“2(xl+"'+Xd”"

m /i > 0 is the Planck constant.
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Schrodinger Equation

m Quantum harmonic oscillators v are characterized as the
. . . 2
eigenvectors (eigenfunctions) of H = —Z V2 + V:

Hy = Ev.
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Schrodinger Equation

m Quantum harmonic oscillators v are characterized as the

eigenvectors (eigenfunctions) of H = —%2V2 + V:

Hy = Ev.

m E > 0, the energy level, is the corresponding eigenvalue.
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Schrodinger Equation

m Quantum harmonic oscillators v are characterized as the
. . . 2
eigenvectors (eigenfunctions) of H = —Z V2 + V:

Hy = Ev.

m E > 0, the energy level, is the corresponding eigenvalue.

m The above equation is known as (time-independent)
Schrodinger equation.
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Schrodinger Equation (Solutions)

m If A =2, in particular, ¥ = hkaﬁ}/z satisfies Haypx =
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Schrodinger Equation (Solutions)

m If A =2, in particular, ¥ = hkaﬁ}/z satisfies Haypx =
m Note that 1 is called the k-th Hermite function,
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Schrodinger Equation (Solutions)

m If A =2, in particular, ¥ = hkaﬁbp satisfies Hy
m Note that 1 is called the k-th Hermite function,

m where hy is the k-th Hermite polynomial in RY and
Ex = 2|k| + d for state k € Ng.
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Schrodinger Equation (Solutions)

m If A =2, in particular, ¥ = hkaﬁbp satisfies Hik = Ext)k.
m Note that 1 is called the k-th Hermite function,

m where hy is the k-th Hermite polynomial in RY and
Ex = 2|k| + d for state k € Ng.

] ”wk”B(Rd) = HthL2(Rd,¢d) =1
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Schrodinger Equation (Solutions)

m If A =2, in particular, ¥ = hkaﬁbp satisfies Hik = Ext)k.
m Note that 1 is called the k-th Hermite function,
m where hy is the k-th Hermite polynomial in RY and
Ex = 2|k| + d for state k € Ng.
B [kl 2@y = NAkll 2(ro ) = 1-
m 1)2(x) explains the spatial density of states (DOS) for x € RY.
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Schrodinger Equation (Solutions)

m If A =2, in particular, ¥ = hkaﬁbp satisfies Hik = Ext)k.
m Note that 1 is called the k-th Hermite function,

m where hy is the k-th Hermite polynomial in RY and
Ex = 2|k| + d for state k € Ng.

Wk”B(Rd) = HthL2(Rd,¢d) =1
12(x) explains the spatial density of states (DOS) for x € R¢.

Relation to the restricted-range inequality?
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Schrodinger Equation (Solutions)

If h =2, in particular, ¥ = hkgb:/2 satisfies H)y
Note that ¢ is called the k-th Hermite function,

where hy is the k-th Hermite polynomial in R? and
Ex = 2|k| + d for state k € Ng.

Wk”B(Rd) = HthL2(Rd,¢d) =1
12(x) explains the spatial density of states (DOS) for x € R¢.

Relation to the restricted-range inequality?

Proposition (Restricted-range inequality (Stronger version))

P2(x)¢a(x) < e~ |[Pl[aga g, -

/X2> V 2’€En,d
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Lower Bound on ¢, 4 (Proof 1/2)

For P € N9, write P = >_|kj<n Skhi and

/ P?(x)¢4(x) = Z Z aMia
lIxllz>+/2kEna K[<n|l[<n

<tr (M) > &

k|<n

= tr(M) | Pl oras,) -

where M = (Mig)ks is a (dimM9) x (dimM9) p.s.d. matrix with

Yk(X)thi(x) -
—_—

M ::/u 1,>+/24E
X|[o>~/2KEp,
? * e ()m(x)da(x)
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Lower Bound on ¢, 4 (Proof 2/2)

Continued.

Recall that E, 4 = 2n+ d and that Ex = 2|k| + d. It hence suffices
to prove the following inequality:

tr(M) = > My = / > d(x) < e <Ena,

k|<n Ixllo>/25End £, <E, ,

Proposition (Local Weyl Law [GS13])

> w0 Sy [ e

EkSEn,d HCISEII,CI

d/2
—(4m) %y (2Enq — IxI13) "
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The Semicircle Law
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The Semicircle Law

d=2
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X
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The Semicircle Law

d=3
o ]
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o n=15
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x ~
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The Semicircle Law
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Technical Details: Propagator and Density Matrix

m To find the explicit constant ¢ = ¢(k), we consider:

Proposition (Mehler Kernel)

If we define the Mehler kernel by
M(x,y;t) = ZkeNg’ e~ tEeah (x)i(y) for t > 0, then

M(x,y;t)

= (47 sinh(2i.‘))_d/2 exp (

2 2
XAl X yde
4tanh(2t)  2sinh(2t) )

m It suffices to prove this for d = 1 thanks to factorization.

m This is an exercise of bivariate Fourier transform (without any
background knowlege in physics).

m Using bra-ket notation in physics, nonetheless, we may write

M(x,y;t) = (xle”™|y), e =" " e B |y) (-
k
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Sharpness

Theorem (Sharpness)

There exist two sequences of probability measures {m,} and {n,}
supported on [—M, M] such that, if we define

TV, = TV(fy,, fr), Hp = H(f,, f,),

then TV, | 0 as n — oo, and moreover it holds for all n that
TV, < e”¢ and that

H, > TV @ (Vo).
where we define
0.33
(t) = ———— t .
(1) log log(1/t)’ >0
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One-dimensional Result?

Suppose 7* and n* are supported on R. Then, we have
TV (fy, f)) = TV(frs, fx) and H(fy, f)) = H(fr, fx) for

(d-1)

T=7"® 8 =T QR ® do,

=125 =i o,

where §p denotes the point mass at zero.

m Thus, the sharp example in one dimension immediately implies
sharp examples in arbitrary dimensions.
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Proof Sketch of the Sharpness

Recall the essential ingredients of the proof of the main theoreRg:

m The quantity ¢, 4 can be bounded from below by e 0,

For d = 1, in particular, we note that the sequence of monomials
(x")n is a sharp instance of the c,(= cn1):
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Proof Sketch of the Sharpness

m The quantity ¢, 4 can be bounded from below by e 0,
m We can control the tail norm ||r{|;2(4,) by e~ SUnlogn)
For d = 1, in particular, we note that the sequence of monomials
(x")n is a sharp instance of the c,(= cn1):
m The norm ratio ||x"|[11(4,) / X" 2(y) is decaying
exponentially in n.
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Proof Sketch of the Sharpness
Recall the essential ingredients of the proof of the main theoreR
m The quantity ¢, 4 can be bounded from below by e 0,

m We can control the tail norm ||r{|;2(4,) by e~ SUnlogn)

For d = 1, in particular, we note that the sequence of monomials
(x")n is a sharp instance of the c,(= cn1):

m The norm ratio ||x"|[11(4,) / X" 2(y) is decaying
exponentially in n.

m Knowing this fact, given n, we construct an example such that
the L%(¢1) projection of (fr, — f,,)/¢1 onto M,(=NL) is
proportional to x”, i.e.,

1 .
—— X, kisodd,
Z hkx)ocx — Apx { (n— k)
0, k is even,

provided that n is odd.
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Robust Density Estimation

Definition
For a distribution class P, its (global) Hellinger covering number is
defined by

Ny(P,e) :==min{N : 3Pq,..., Pn,

. Y<al
E‘éﬁlg'?éw H(R, P;) < ¢}

The local Hellinger covering number of P is

N joc(P,€) := sup Nu(Bu(P,n),n/2),
PeEPn>e

where By(P,n) ={R € P : H(P,R) < n}.
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Entropic Characterization of Learning in Hellinger

Let Pum,q be our distribution class (Gaussian mixtures with
compactly supported mixing distributions).

Proposition (Learning Gaussian mixtures in Hellinger [JPW23])

Suppose P is a compact subset (in Hellinger) of Py 4. Let

P = I3(X1, ..., Xn) denote an estimator based on Xi,..., X,
drawn i.i.d. from P € P. Then,

inf sup Ep [H2 (P, I/D\ﬂ

P PcP
= inf sup Ep [H2 (P, ﬁ)} = ef,,
PeP PeP
where
=< inf [+ 1 log N joc (P, €) | - (6)
n e>0 n ’ ’
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Entropic Characterization of Learning in Hellinger

m The upper bound follows from Le Cam-Birgé construction
[LeC73, Bir83, Bir86].

m The lower bound follows from Fano's inequality and
H(fx, f,) < «/KL(fz||f,) under P 4 [JPW23]:

~ 1
P [H <P, P) } >
2
m By triangular inequality and projection argument, we can
restrict P to be a proper estimator.

P [Tv (P, ﬁ) > e}ﬁ"(”} >P [H (P /3) > 6”] > L
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Entropic Characterization of Learning in TV

Theorem (Learning Gaussian mixtures in total variation)

Under the same conditions as the above, we have

o)
ei<1+m) <infsup Ep [TV2 (P 'Bﬂ
~ P pep
= inf sup Ep [TV2 (P,P)]

PeP PeP
< 62

~ n

where we define €, as in (6).

m The upper bound is trivial.
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Robust Density Estimation

Proposition (Robust density estimation in TV)

Consider the data generating process as follows.
Xty Xp KP = (1-€)Pr +€Q, (7)
Then, we have

s 12 (1. )] @ 0L g

where the expectation is under (7) and the supremum is taken
over all @ and m such that supp(w) C [-M, M]¢.

m By Yatracos' construction [Yat85].
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Robust Density Estimation

Theorem (Minimax rate of robust density estimation)

Consider the data generating process as in (7). Then, we have

infsupE [H2 (f,r, f)} < 52(6, n), (9)
f mQ
where we define
1-04(1)
E%(e,n) = 62<17'°g('°z(11/)6)ve)) + (1> ’ (10)
n

the expectation is under (7), and the supremum is taken over all Q
and 7 such that supp(w) C [-M, M]9.

V.
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Robust Density Estimation

Theorem (Minimax rate of robust density estimation)

Consider the data generating process as in (7). Then, we have

) (1)
inf sup [H2 (fﬂ, f)] > (1 memsti/a) (11)
f TI',Q

where the expectation is under (7) and the supremum is taken
over all @ and m such that supp(r) C [-M, M]¢.

m The rate in (10) is minimax optimal in €. It is, indeed, the
exact minimax rate in the regime where n > poly(1/e¢).

Lemma ([CGR18])

Suppose Py and P, are probability measures such that

TV(P1, P2) < 1%. Then, there exist two probability measures Qy

and @, such that (1 —€)P1 +eQ1 = (1 — €)P + €Qy.
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Robust Regret Bound

Theorem (Robust regret bound)

Consider the data generating process as follows.

Xi ~ (1 — E)N(Q,', Id) + €Q, (12)
d

Then, we have

~ ~ 2
infsup: [ Exer [00) - 00| < £2con)
f 7T7Q
where the outer expectation is under (12) and the supremum is
taken over all Q and 7 such that supp(r) C [-M, M]?.

m Ispired by NPMLE papers [JZ09, SG20, SGS25].
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