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1 Supplementary Material: Probability Space (확률공간)

Definition 1. Given a set S, the power set (멱집합) P(S) is the set of all subsets of S.

For example, P(∅) = {∅}.

Definition 2. Given a nonempty set S, an algebra (대수) F ⊂ P(S) is said to be a σ-algebra on S if it is closed
under countable union (가산합집합), that is,

• ∅ ∈ F ,

• S \A ∈ F whenever A ∈ F , and

•
⋃∞

j=1 Aj ∈ F whenever Aj ∈ F for j ∈ N.

Note that every σ-algebra is closed under countable intersection (가산교집합). The following are some
examples.

• {∅, S} is the trivial σ-algebra on S if S is nonempty.

• P(S) is the discrete (이산) σ-algebra on S.

• {∅, {1, 2}, {3}, {1, 2, 3}} is a σ-algebra on {1, 2, 3}.

• If S is uncountable, {A ∈ P(S) : A or S \A is countable} is a σ-algebra on S.

Definition 3. Given a sample space (표본 공간) S and a σ-algebra F on S, a member of F is called an event
(사건).

Definition 4. Given a σ-algebra F , a nonnegative-real-valued function µ : F → [0,∞) is said to be a finite
measure (유한측도) on F if

• µ(∅) = 0,

• µ
(⋃∞

j=1 Aj

)
=
∑∞

j=1 µ(Aj) whenever {Aj}∞j=1 ⊂ F is a disjoint (서로소) sequence of members in F .

The second porperty is called the countable additivity of measure (가산가법성).

Definition 5. Given a sample space S and a σ-algebra F on S, a finite measure P : F → [0,∞) on F is called a
probability measure (확률측도) on F if P(S) = 1. The triple (S,F ,P) is called a probability space (확률공간).

Note that 0 ≤ P(A) ≤ 1 for all A ∈ F .

Definition 6. Given a probability space (S,F ,P), a function X : S → R is said to be a random variable (확률
변수) if it is F-measurable, that is,

• {s ∈ S : X(s) ≤ x} ∈ F for all x ∈ R.

Given X , one defines a function FX : R → [0, 1] by FX(x) = P ({s ∈ S : X(s) ≤ x}). It is called the cumulative
distribution function (cdf; 누적 분포 함수) of X . As a remark, P (X ≤ x) is a shorthand form of the right hand
side.

• The cdf FX of X is (1) non-decreasing, (2) right-continuous, and (3) satisfies FX(−∞) = 0, FX(∞) = 1.
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2 Exercises a.k.a. 족보

• THERE IS NO ROYAL ROAD TO MATHEMATICAL STATISTICS.

2.1 BASIC QUESTION A

Let {Aj}∞j=1 be a sequence of events. Prove that P (lim infn→∞ An) ≤ lim infn→∞ P(An) where

lim inf
n→∞

An =
∞⋃

n=1

∞⋂

j=n

Aj

is an analogous definition of

lim inf
n→∞

an = lim
n→∞

inf {aj : j ≥ n}

in해석개론 1.

2.1.1 Answer

Define Bn =
⋂∞

j=n Aj for each n ∈ N. One may show that {Bn}∞n=1 is an increasing sequence of events.
Now we are to show the inequality:

P

( ∞⋃

n=1

Bn

)
≤ lim

n→∞
inf {P(Aj) : j ≥ n} .

By appealing to the continuity of probability measure in the textbook, P (
⋃∞

n=1 Bn) = limn→∞ P(Bn) holds.
Hence, it is enough to show that

P(Bn) ≤ inf {P(Aj) : j ≥ n} ,

which is obvious from the monotonicity of probability measure in the textbook since Bn ⊂ Aj for all j ≥ n.

• ADDITIONAL NOTES

It is an easy exercise to show that

P(lim inf An) ≤ lim inf P(An) ≤ lim supP(An) ≤ P (lim supAn) .

This inequalities are called the continuity inequalities of measure by some authors. In case lim inf An =

lim supAn, one writes limAn = lim inf An = lim supAn. (Otherwise, limAn is not defined.)
If limAn is well-defined, then

P(limAn) = P(lim inf An) = lim inf P(An) = lim supP(An) = P (lim supAn)

= limP(An).

Note that limAn is well-defined when {An}∞n=N is either increasing or decreasing for some N . However,
the converse is false. Consider for S = N, A2n = {1, · · · , n}, A2n−1 = {1, · · · , 2n− 1}. Then limAn = N.
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2.2 BASIC QUESTION B

Ler F be the cdf of a random variable X . Prove that P(X = x) = F (x)− F (x−) where

F (x−) = lim
y↑x

F (y) = lim
h↓0

F (x− h)

2.2.1 Answer

Define An = {s ∈ S : X(s) ∈ (−∞, x − 1
n ]} for each n ∈ N. Then {An}∞n=1 is an increasing sequence of

events. Hence by the continuity of probability measure,

P(X < x) = P

( ∞⋃

n=1

An

)
= lim

n→∞
P(An) = lim

n→∞
F

(
x− 1

n

)
= F (x−).

By the additivity of probability measure, we have P(X = x) = P(X ≤ x)− P(X < x).

2.3 김우철 (2011)

Suppose A1, · · · , An are events in the sample space S. Prove that

P

(
n⋃

i=1

Ai

)
≤

n∑

i=1

P(Ai)−
∑

i<j

P(Ai ∩Aj) +
∑

i<j<k

P(Ai ∩Aj ∩Ak).

2.3.1 Answer

We further claim stronger proposition given by

P

(
n⋃

i=1

Ai

)
≤

n∑

i=1

P(Ai) (1)

P

(
n⋃

i=1

Ai

)
≥

n∑

i=1

P(Ai)−
∑

i<j≤n

P(Ai ∩Aj) (2)

P

(
n⋃

i=1

Ai

)
≤

n∑

i=1

P(Ai)−
∑

i<j≤n

P(Ai ∩Aj) +
∑

i<j<k≤n

P(Ai ∩Aj ∩Ak). (3)

Proof by induction. It is easy to check the cases n = 1, 2. Firstly, we give a proof of the inequality (3) with
respect to A1, · · · , An+1. Observe that

P

(
n+1⋃

i=1

Ai

)
= P

((
n⋃

i=1

Ai

)
∪An+1

)

= P

(
n⋃

i=1

Ai

)
+ P(An+1)− P

((
n⋃

i=1

Ai

)
∩An+1

)

≤
n+1∑

i=1

P(Ai)−
∑

i<j≤n

P(Ai ∩Aj) +
∑

i<j<k≤n

P(Ai ∩Aj ∩Ak)− P

(
n⋃

i=1

(Ai ∩An+1)

)
.
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This inequality holds by the induction hypothesis (3) applied to A1, · · · , An. Applying the induction hy-
pothesis (2) to the last term regarding A1 ∩ An+1, · · · , An ∩ An+1 ends the proof. We omit proofs of (1), (2)
for n+ 1 sets because they are much easier.

2.4 Unknown (2009) and이재용 (2016)

Suppose A1, · · · , An are events in the sample space S. Prove that

P

(
n⋃

i=1

Ai

)
=

n∑

i=1

P(Ai)−
∑

i<j

P(Ai ∩Aj) +
∑

i<j<k

P(Ai ∩Aj ∩Ak)− · · ·+ (−1)n+1P

(
n⋂

i=1

Ai

)

2.4.1 Answer

Omitted.

2.5 Unknown (2009)

Events A1, · · · , An in the sample space S is said to be ”pairwise” independent, if

P(Ai ∩Aj) = P(Ai)P(Aj), i < j

Prove by a counter-example that the pairwise independence does not imply the independence of A1, · · · , An.

2.5.1 Answer

Given the sample space S = {0, 1, 2, 3} and the collection of events F = P(S), define the uniform probabil-
ity as

P(A) =
|A|
|S| =

|A|
4

.

To put it more intuitive and simple, just roll a fair regular-tetrahedral die. 정사면체 주사위를 하나 굴린다.
Fix n = 3 and define Ai = {0, i} for i = 1, 2, 3. Confirm that the events A1, A2, A3 are pairwise independet
but not ”mutually” independent.

2.6 이재용 (2020)

Let (X,Y, Z) be jointly distributed with the pdf

f(x, y, z) =
1− sinx sin y sin z

8π3
I(0 ≤ x, y, z ≤ 2π).

Prove that X,Y, Z are pairwise independent, but not independent as a 3-dimensional random vector.
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2.6.1 Answer

Integrating out z gives the joint pdf of (X,Y ):

f1,2(x, y) =

∫ 2π

0

1− sinx sin y sin z

8π3
dzI(0 ≤ x, y ≤ 2π)

=
1

4π2
I(0 ≤ x, y ≤ 2π)

=
1

2π
I(0 ≤ x ≤ 2π)

1

2π
I(0 ≤ y ≤ 2π)

= f1(x)f2(y).

Hence X,Y are independent. However, it is obvious that f1,2,3(x, y, z) ̸= f1(x)f2(y)f3(z).

2.7 Unknown (2007*, 2009*) and김우철 (2015*, 2017)

Suppose the cdf F of X is given by

F (x) =





0, x < 0

(x2 + 1)/9, 0 ≤ x < 1

(x2 + 4)/9, 1 ≤ x < 2

1, x ≥ 2

For k = 1, 2, · · · , define Ak = [1/k, 2− 1/k] and Bk = (1− 1/k, 2 + 1/k). Find the following:
limk→∞ Ak, limk→∞ P(X ∈ Ak), limk→∞ Bk, limk→∞ P(X ∈ Bk).

2.7.1 Answer

Note that Ak is increasing and Bk is decreasing so that limk→∞ Ak and limk→∞ Bk are well-defined. Verify
that

lim
k→∞

Ak = (0, 2) lim
k→∞

P(X ∈ Ak) = F (2−)− F (0) = 8/9− 1/9 = 7/9

lim
k→∞

Bk = [1, 2] lim
k→∞

P(X ∈ Bk) = F (2)− F (1−) = 1− 2/9 = 7/9

2.8 김우철 (2018)

Suppose the cdf F of X is given by

F (x) =





0, x < 0

x/10, 0 ≤ x < 2

x2/10, 2 ≤ x < 3

1, x ≥ 4

For n = 1, 2, · · · , define Bn = (2− 1/n, 3− 1/n). Prove that lim infn→∞ Bn = lim supn→∞ Bn and find
P (X ∈ limn→∞ Bn).
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2.8.1 Answer

Note that Bn is neither increasing nor decreasing. However,

lim inf Bn =

∞⋃

n=1

∞⋂

j=n

Bj =

∞⋃

n=1

[
2, 3− 1

n

)
= [2, 3)

and

lim supBn =
∞⋂

n=1

∞⋃

j=n

Bj =
∞⋂

n=1

(
2− 1

n
, 3

)
= [2, 3)

coincide. Therefore, limBn = [2, 3) and hence

P(X ∈ limBn) = F (3−)− F (2−) = 9/10− 2/10 = 7/10.

2.9 이재용 (2016)

Let F be the cdf of X . Define F−1(u) = inf{x ∈ R : F (x) ≥ u} for 0 < u < 1. Prove the following:

• F−1 is well-defined. (Why does the infimum exist?)

• F (F−1(u)) ≥ u for u ∈ (0, 1).

• F−1(F (x)) ≤ x for x ∈ R.

• u ≤ F (x) ⇐⇒ F−1(u) ≤ x for u ∈ (0, 1) and x ∈ R.

• Suppose F is continuous and strictly increasing. Then F (F−1(u)) = u and F−1(F (x)) = x.

2.9.1 Answer

Given u ∈ (0, 1), write Au = {x ∈ R : F (x) ≥ u}. Verify that Au is a nonempty subset of R bounded from
below. Hence F−1(u) = inf Au is well-defined. For each n ∈ N, there exists an element xn ∈ Au such that

xn < inf Au +
1

n
= F−1(u) +

1

n
.

Since F is non-decreasing, one has

u ≤ F (xn) ≤ F

(
F−1(u) +

1

n

)
.

Taking limn→∞ concludes that u ≤ F (F−1(u)) since F is right-continuous. Now for each x ∈ R, it is obvious
that

x ∈ AF (x),

implying that x ≥ inf AF (x) = F−1(F (x)). Now we are to show u ≤ F (x) ⇐⇒ F−1(u) ≤ x. Since F is
non-decreasing, it only remains to elaborate that F−1 is non-decreasing (left to the tutees).
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Suppose now F is continuous and strictly increasing. It is easy to check that F (R) = (0, 1). That is, for each
u ∈ (0, 1), there exists x ∈ R such that F (x) = u. Conversely, for each x ∈ R, set u = F (x) ∈ (0, 1). Observe
that Au = [x,∞). As a result,

F−1(u) = inf Au = inf[x,∞) = x.

Explain why this ends the proof.

2.10 Unknown (2007, 2009, 2011)

Let X be a non-negative random variable of continuous type with pdf f and cdf F satisfying F ′(x) = f(x)

for all x > 0. Suppose E(X) < ∞. Prove that limx→∞ x(1− F (x)) = 0 and E(X) =
∫∞
0

(1− F (x))dx.

2.10.1 Answer

Given a constant x > 0,

0 ≤ x(1− F (x)) = x

∫ ∞

x

f(z)dz ≤
∫ ∞

x

zf(z)dz =

∫ ∞

0

zf(z)dz −
∫ x

0

zf(z)dz.

This argument is valid since zf(z) is nonnegative for z > 0 and
∫∞
0

zf(z)dz = E(X) < ∞ by assumption.
The right hand side converges to zero as x → ∞. As a result, limx→∞ x(1 − F (x)) = 0 by appealing to the
Sandwich Theorem. Indeed, Fubini’s Theorem applied to a nonnegative function ensures us that

E(X) =

∫ ∞

0

zf(z)dz =

∫ ∞

0

∫ z

0

f(z)dxdz =

∫ ∞

0

∫ ∞

x

f(z)dzdx =

∫ ∞

0

(1− F (x))dx.

2.11 Unknown (2007)

Suppose that X and Y have the joint pdf

f1,2(x, y) = 15x2yI(0 < x < y < 1).

Compute P(Y ≤ 1/2) and P(X + Y ≤ 1).

7
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2.11.1 Answer

P(Y ≤ 1/2) =

∫ 1/2

0

∫ y

0

15x2y dxdy

=

∫ 1/2

0

5y4 dy = (1/2)5 = 1/32

P(X + Y ≤ 1) =

∫ 1/2

0

∫ 1−x

x

15x2y dydx

=

∫ 1/2

0

15

2
x2(1− 2x) dx

=

∫ 1

0

15

16
z2(1− z) dz (substitute z = 2x)

=
15

16
· 1

12
=

5

64
.

2.12 Unknown (2007)

The pdf of standard logistic distribution L(0, 1) is given by

f(x) =
e−x

(1 + e−x)2
I(−∞ < x < ∞).

Find F−1(u) for the cdf F of L(0, 1).

2.12.1 Answer

Define σ(x) = 1/(1+ e−x) for x ∈ R. Verify that σ ∈ C∞(R), that is, σ is k times continuously differentiable
for each k ∈ N.

σ(−x) = 1− σ(x)

σ′(x) = σ(x)σ(−x) = f(x)

σ−1(u) = log
u

1− u

Then F (x) =
∫ x

−∞ σ′(z)dz = σ(x) and hence F−1(u) = log u
1−u . How can you get a random sample from

the standard logistic distribution? Consider X = log U
1−U where U ∼ the standard uniform distribution.

2.13 Unknown (2011)

Let (X,Y ) be jointly distributed with the pdf

f(x, y) = y−1e−yI(0 < x < y < ∞).

Find the marginal pdf f1(x), the conditional pdf f2|1(y|x), and Var[Y |X].

8
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2.13.1 Answer

f1(x) =

∫ ∞

x

y−1e−y dy (non-elementary; no closed form)

f2|1(y|x) =
y−1e−yI(x < y < ∞)

f1(x)

E[Y |X = x] =

∫∞
x

e−y dy

f1(x)

=
e−x

f1(x)

E[Y 2|X = x] =

∫∞
x

ye−y dy

f1(x)

=
(1 + x)e−x

f1(x)

Recall that

Var[Y |X = x] = E[Y 2|X = x]− (E[Y |X = x])
2

and hence

Var(Y |X) =
(1 +X)e−X

f1(X)
−
(

e−X

f1(X)

)2

where

f1(X) =

∫ ∞

X

y−1e−ydy.

2.14 Unknown (2009)

Let (X,Y ) be jointly distributed with the pdf

f(x, y) =
1 + xy

4
I(|x| < 1)I(|y| < 1).

Prove that X and Y are NOT independent. Prove that X2 and Y 2 are independent.

2.14.1 Answer

Hint: Compute P(X2 < t) given 0 < t < 1. Details are left to the tutees.

2.15 Unknown (2009)

Let F be the cdf of a random variable. Prove that the set of discontinuity points of F ,

D = {x ∈ R : F is discontinuous at x}

9
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is countable.

2.15.1 Answer

There exists a function h : D → Q such that

h(x) is an arbitary element of (F (x−), F (x)) ∩Q.

h is well-defined since F (x−) < F (x) for every x ∈ D and Q is dense in R.
(Remark: This argument depends on the Axiom of Choice. Search it if you are interested.)
For x < y in D, we have

F (x−) < F (x) ≤ F (y−) < F (y)

because yn := y − 1
n converges to y from below and there exists N ∈ N such that

n > N =⇒ x < yn =⇒ F (x) ≤ F (yn).

As a result, h is injective, implying that D is countable.

3 Remark

Definition 7. A random variable X : S → R is said to be of discrete type (이산형확률변수) if the image

X(S) = {X(s) ∈ R : s ∈ S}

is discrete in the sense that every point in X(S) is isolated (고립점).

Recall that a point p is said to be an isolated point of a subset A in the metric space R if there exists an
open neighborhood of p that does not contain any other points of A.

Regardless of the geometry of the image X(S), the cdf FX of X is defined on the entire real line R.

Definition 8. A random variable X : S → R is said to be of continuous type (연속형확률변수) if the cdf FX of
X is continuous.

Definition 9. A random variable X : S → R is said to be of mixed type (혼합형확률변수) if it is neither discrete
nor continuous, but is a mixture of both.

10
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4 Advanced Exercise

Suppose the cdf F of a random variable X is given by

F (x) =





a arctan(x) + πa+ b, x ≥ 0

a arctan(x) + b, x < 0

for some constants a, b ∈ R.

• Find a and b.

• (optional) Articulate that (X ∈ Q) and (X < 1) are events.

• Compute P(X ∈ Q) and P(X < 1).

• Verify that the random variable X is neither discrete nor continuous.

• Does a pdf f of X exist?

• Prove that there exist random variables Xd and Xc such that Xd is discrete, Xc is continuous, and

F = λFXd
+ (1− λ)FXc

holds for some λ ∈ [0, 1].

• (optional) How would you generate a random sample X ∼ F in practice?

11
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1 Supplementary Material

1.1 Infinite Sum

Definition 1. Given an infinite set A and function f : A → [0,∞), the infinite sum
∑

a∈A f(a) is defined by

∑

a∈A

f(a) = sup

{∑

b∈B

f(b) : B ⊆ A,B is finite

}
.

Proposition 1. Suppose A is a countably infinite set. Then there exists a bijection (전단사함수)

r : N → A.

Proposition 2. Given a countably infinite set A and function f : A → [0,∞),

∑

a∈A

f(a) =
∞∑

n=1

f (r(n))

holds for every bijection r : N → A.

1



Apr 04 2023 수리통계 1튜터정준혁

1.2 Joint Cumulant Generating Function

Recall that the joint moment generating function (결합적률생성함수) of X,Y is defined as

M1,2(t1, t2) = E
(
et1X+t2Y

)

if the expectation is finite in some open neighborhood of (t1, t2) = (0, 0).

Proposition 3. If mgf M1,2(t1, t2) of (X,Y ) exists, (i.e., E(et1X+t2Y ) < ∞ for (t1, t2) contained in an open
neighborhood of the origin) then the joint moments E(XiY j) of all orders are well-defined. In addition,

M1,2(t1, t2) =

∞∑

i=0

∞∑

j=0

E(XiY j)

i!j!
ti1t

j
2

holds in some open neighborhood of the origin. On the right hand side, we assume 00 = 1 by convention.

The first several terms are very useful.

M1,2(t1, t2) = 1 + (E(X)t1 + E(Y )t2) +

(
E(X2)

t21
2
+ E(XY )t1t2 + E(Y 2)

t22
2

)
+O(∥t∥3)

The natural logarithm of joint mgf is called joint cumulant generating function (결합누율생성함수).

C1,2(t1, t2) = logM1,2(t1, t2) = logE
(
et1X+t2Y

)

The first several terms are attained from the series expansion: log(1 + x) = x− x2

2 +O(x3).

C1,2(t1, t2) = (E(X)t1 + E(Y )t2) +

(
Var(X2)

t21
2
+ Cov(X,Y )t1t2 +Var(Y 2)

t22
2

)
+O(∥t∥3)

1.3 Gamma Integral

Definition 2. Gamma function Γ : (0,∞) → R is defined by

Γ(t) =

∫ ∞

0

xt−1e−x dx

It is easily derived that

• Γ
(
1
2

)
=

√
π

• Γ(1) = 1

• Γ(t+ 1) = tΓ(t) for all t > 0. Henceforth, Γ(n) = (n− 1)! for n ∈ N. Note that 0! = 1.

It is helpful to memorize that

∫ ∞

0

xn−1e−ax dx =
1

an

∫ ∞

0

zn−1e−z dz =
Γ(n)

an
=

(n− 1)!

an

holds for all n ∈ N and a > 0.

2
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2 Exercises a.k.a. 족보

• THERE IS NO ROYAL ROAD TO MATHEMATICAL STATISTICS.

2.1 Advanced Exercise

Suppose the cdf F of a random variable X is given by

F (x) =





a arctan(x) + πa+ b, x ≥ 0

a arctan(x) + b, x < 0

for some constants a, b ∈ R.

• Find a and b.

• (optional) Articulate that (X ∈ Q) and (X < 1) are events.

• Compute P(X ∈ Q) and P(X < 1).

• Verify that the random variable X is neither discrete nor continuous.

• Does a pdf f of X exist?

• Prove that there exist random variables Xd and Xc such that Xd is discrete, Xc is continuous, and

F = λFXd
+ (1− λ)FXc

holds for some λ ∈ [0, 1].

• (optional) How would you generate a random sample X ∼ F in practice?

2.1.1 Answer

Solving limx→∞ F (x) = 1 and limx→−∞ F (x) = 0 gives

a =
1

2π
b =

1

4

Recall that (X ≤ x) is an event for every x ∈ R. Indeedly,

(X ∈ Q) =
⋃

q∈Q
(X = q) =

⋃

q∈Q

∞⋂

n=1

(
(X ≤ q) \ (X ≤ q − 1

n
)

)

(X < 1) =

∞⋃

n=1

(X ≤ 1− 1

n
)

3
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are events since Q is countable. By appealing to the countable additivity and continuity of P, we have

P(X ∈ Q) =
∑

q∈Q
P

( ∞⋂

n=1

(
(X ≤ q) \ (X ≤ q − 1

n
)

))

=
∑

q∈Q
lim
n→∞

P
(
(X ≤ q) \ (X ≤ q − 1

n
)

)

=
∑

q∈Q
lim
n→∞

(
F (q)− F (q − 1

n
)

)

=
∑

q∈Q
(F (q)− F (q−))

= F (0)− F (0−) =
1

2

and

P(X < 1) = lim
n→∞

P(X ≤ 1− 1

n
)

= lim
n→∞

F (1− 1

n
)

= F (1−) =
7

8

F is strictly increasing for an open interval (e.g., for 1 < x < 2) so F is not discrete. However, F is
discontinuous at x = 0, implying that F is not continuous as well. In addition, pdf f of X cannot be
defined since F is discontinuous at x = 0. Now consider the following two cdfs.

FXd
(x) =

{
1, x ≥ 0

0, x < 0
FXc

(x) =
1

π
arctan(x) +

1

2

Verify that these are well-defined cdfs of discrete and continuous random variables, respectively. Further-
more, one has F = λFXd

+ (1− λ)FXc with λ = 1/2. Consider the following hierarchical random variable.

Y ∼ Ber(λ)

X|Y = 1 ∼ FXd

X|Y = 0 ∼ FXc

Then it’s an easy exercise to show that X exactly has F as its cdf. As described in the class, one can also
prove that

F−1
Xc

(U) = tan

(
π(U − 1

2
)

)
∼ FXc

where U ∼ Unif(0, 1) (i.e, the standard uniform distribution). Now we are able to generate n iid samples
from the distribution F following the notion of mixed-type distribution. To put it more precise, given
n iid standard uniform samples U1, · · · , Un, compute Xi = tan

(
π(Ui − 1

2 )
)

and coerce it into zero with
probability 1/2 for each i.

4
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2.2 이재용 (2016)

Let X be a continuous random variable endowed with the pdf fX given by

fX(x) =

{
2x, 0 ≤ x ≤ 1

0, otherwise

Define Y by

Y = g(X) =

{
X, 0 ≤ X ≤ 1

2
1
2 , X > 1

2

(a) Compute the cdf of Y .
(b) Compute the conditional pdf of Y given Y < 1

2 .

2.2.1 Answer

(a) Fix 0 ≤ y < 1
2 . Then

P(Y ≤ y) = P(0 ≤ X ≤ 1

2
)P(Y ≤ y|0 ≤ X ≤ 1

2
) + P(X >

1

2
)P(Y ≤ y|X >

1

2
)

︸ ︷︷ ︸
=0

= P(0 ≤ X ≤ 1

2
, Y ≤ y)

= P(0 ≤ X ≤ y) = y2

and hence

FY (y) = P(Y ≤ y) =





0, y < 0

y2, 0 ≤ y < 1
2

1, y ≥ 1
2

(b) Note that Y < 1
2 if and only if 0 ≤ X < 1

2 . In particular, Y = X holds provided that Y < 1
2 . Hence it

only remains to compute the conditional pdf of X given X < 1
2 .

fY |Y < 1
2
(y) = 8yI(0 ≤ y <

1

2
)

2.3 이재용 (2016)

Consider a bivariate random variable (X,Y ) with

E(X) = µ1, Var(X) = σ2
1 , E(Y ) = µ2, Var(Y ) = σ2

2 , Corr(X,Y ) = ρ.

Suppose all the qunatities are finite. Suppose E(Y |X) = a+ bX for some reals a, b ∈ R.
(a) Prove that E(Y |X) = µ2 + ρσ2

σ1
(X − µ1).

(b) Prove that E(Var(Y |X)) = σ2
2(1− ρ2).

5
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2.3.1 Answer

By appealing to the law of iterated expectations, we have

µ2 = E(Y ) = E (E(Y |X)) = E(a+ bX) = a+ bµ1

µ1µ2 + ρσ1σ2 = E(XY ) = E (E(XY |X)) = E (XE(Y |X)) = E(aX + bX2) = aµ1 + b(µ2
1 + σ2

1)

Combining these two equations concludes that

a = µ2 − bµ1 b = ρ
σ2

σ1

By appealing to the law of total variance,

E (Var(Y |X)) = Var(Y )−Var (E(Y |X)) = σ2
2 − b2σ2

1 = σ2
2(1− ρ2).

2.4 김우철 (2017)

Suppose a random variable X has its cgf (cumulant generating function). The r-th cumulant is given by

cr =

{
(2k − 1)!2−2k+1, r = 2k

0, r = 2k − 1

for k = 1, 2, · · · .
(a) Find the r-th moment of X .
(b) Find the pdf of X .
(c) Find the kurtosis (첨예도) of X .

2.4.1 Answer

Consider its cgf CX(t).

CX(t) =
∞∑

k=1

c2k
t2k

(2k)!

=

∞∑

k=1

(2k − 1)!2−2k+1 t2k

(2k)!

= 2
∞∑

k=1

(t/2)2k

2k

=

∞∑

n=1

(t/2)n

n
+

∞∑

n=1

(−t/2)n

n
(All terms of odd indices cancel out.)

= − log(1− t

2
)− log(1 +

t

2
) (− log(1− x) = x+ x2/2 + x3/3 + · · · )

6
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whose radius of convergence is 2. Hence the mgf MX of X is attained as follows.

MX(t) = expCX(t) =

(
1− t2

4

)−1

= 1 +
∞∑

k=1

(
t2

4

)k

((1− x)−1 = 1 + x+ x2 + x3 + · · · )

= 1 +
∞∑

k=1

(2k)!2−2k t2k

(2k)!

That is, the r-th moment is given by

mr =

{
(2k)!2−2k, r = 2k

0, r = 2k − 1

for k = 1, 2, · · · . Now we are to find the pdf of X . Recall that − log(1−t/2) is exactly the cgf of Y ∼ Exp(1/2)

endowed with the pdf

fY (y) = 2e−2yI(y > 0).

In fact, − log(1 + t/2) is nothing but the cgf of −Z where Z ∼ Exp(1/2). Hence, the Theorem 2.5.11(b) in
the textbook says that CX(t) is explicitly the cgf of Y −Z where Y, Z are iid(i.e, identical and independent).
By the uniqueness of cgf illustated in the Theorem 2.2.4(b), we are ensured to write that

X
d
= Y − Z

It is intriguing to show the following property of Exponential distributions, namely, the memoryless prop-
erty.

(Y − Z|Y > Z)
d
= Y

(Z − Y |Y ≤ Z)
d
= Z

Let F denote the cdf of X . Given x ≥ 0, we have

1− F (x) = P(X > x) = P(Y > Z)︸ ︷︷ ︸
=1/2

P(Y − Z > x|Y > Z)︸ ︷︷ ︸
=P(Y >x)=e−2x

=
1

2
e−2x

Analogously, given x ≥ 0,

F (−x) = P(X ≤ −x) = P(Y ≤ Z)P(Z − Y ≥ x|Y ≤ Z) =
1

2
e−2x

Combining these two equations uniquely and entirely determines the values of F for all x ∈ R. Now F is
continuous and one has

f(x) =
d

dx
F (x) = e−2|x|I(−∞ < x < ∞).

7
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The distribution F is called the Double Exponential (이중지수) distribution, a.k.a. Laplace distribution
(with location parameter (위치모수) 0 and scale parameter (척도모수) 1/2.) Please refer to https://

en.wikipedia.org/wiki/Laplace distribution. Then see Exercises 1.15 and 1.16 in the textbook.
Finally, from the formula of the r-th cumumant, we have

c2 = 1!2−1 = 1/2, (= Var(X))

c4 = 3!2−3 = 3/4.

Then Exercises 1.19 and 1.20 say that the (excess) kurtosis of X equals to c4/c
2
2.

kurt(X) =
c4
c22

= 3.

That is, the Laplace distribution is much sharper than the normal distribution. Now see Exercise 1.22. As a
final remark, kurtosis is translation/scaling invariant by definition. That is, for example,

• Every Normal distribution has 0 as its kurtosis.

• Every Laplace distribution has 3 as its kurtosis.

2.5 김우철 (2017)

Suppose X,Y are jointly distributed with the following pdf.

f1,2(x, y) = 3e−2x−yI(0 < x < y < ∞)

(a) Find the conditional pdf f2|1(y|x) given X = x for some x > 0.
(b) Find Var[E(Y |X)] and E[Var(Y |X)].
(c) Find Var[X + Y − E(Y |X)].

2.5.1 Answer

A little calculus ensures us that

f1(x) = 3e−3xI(0 < x < ∞)

f2|1(y|x) = ex−yI(x < y < ∞)

One may identify these distributions to the known ones, respectively.

X ∼ Exp(1/3)

(Y −X)|X ∼ Exp(1)

Hence

E(Y |X) = E(Y −X|X) + E(X|X) = 1 +X

Var(Y |X) = Var(Y −X|X) = 1

8
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As a result, Var[E(Y |X)] = Var(X) = 1/9 and E [Var(Y |X)] = E(1) = 1. Furthermore, since E(Y |X) =

1 +X ,

Var[X + Y − E(Y |X)] = Var(Y − 1) = Var(Y ) =
1

9
+ 1 =

10

9

by appealing to the law of total variation.

2.6 이재용 (2020)

Suppose X ⊥⊥ Y and

FX(x) =





(x+θ)n

(2θ)n , |x| ≤ θ

1, x > θ

0, x < −θ

FY (y) =





1−(−y+θ)n

(2θ)n , |y| ≤ θ

1, y > θ

0, y < −θ

Compute E(X − Y ).

2.6.1 Answer

Very easy. Left to the tutees. The independence condition is not necessary. Find E(X + θ) and E(−Y + θ),
respectively. Then E(X − Y ) = E(X + θ) + E(−Y + θ)− 2θ.

2.7 이재용 (2020)

5명의투표자가있는선거구가있고, 국회의원후보 A와 B가있다고하자. 5명의투표자중M명이 A후보에게

투표했는데, M이따르는확률분포는

P(M = m) =
1

6
m = 0, 1, 2, 3, 4, 5

라고 하자 투표가 끝난 후, 개표를 시작하여 2명의 투표를 개표하였더니, 이 중 1명은 A에게, 다른 1명은 B에게

투표하였다. 이때 5명의투표자중 3명이상이 A후보에게투표했을확률은얼마인가?

2.7.1 Answer

첫 2명의투표중 A가득표한수를 X라고나타내자.

• (Prior) M ∼ Unif{0, 1, 2, 3, 4, 5}

• (Model) X|M ∼ HyperGeo(5,M, 2)

• (Posterior) M |X ∼?

9
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특히 본 문제는 M |X = 1이라는 posterior distribution에 대해 묻는 것이 된다. 분포 HyperGeo(5,M, 2)는

다음과같이주어진다. Indicator function에들어갈 X의 support에주의한다.

P(X = x|M = m) =

(
2

x

)(
3

m− x

)

(
5

m

) I{max(0,m−3),··· ,min(2,m)}(x)

Bayes’ Theorem에의하여각 x = 0, 1, 2에대하여

P(M = m|X = x) ∝ P(M = m)P(X = x|M = m)

∝ P(X = x|M = m)

∝

(
2

x

)(
3

m− x

)

(
5

m

) I{x,x+1,x+2,x+3}(m) (with respect to m)

이성립한다. 여기서는M의 support에주의한다. 특별히 x = 1인경우에는

P(M = m|X = 1) ∝

(
3

m− 1

)

(
5

m

) I{1,2,3,4}(m)

이므로합이 1이되도록 normalize하여

P(M = 1|X = 1) = P(M = 4|X = 1) = 2/10

P(M = 2|X = 1) = P(M = 3|X = 1) = 3/10

을얻는다. 따라서 P(M ≥ 3|X = 1) = 5/10 = 1/2.

2.8 김우철 (2017)

Suppose the mgf of X exists. The k-th moment mk of X is given by

mk = (−1)k
k∑

l=1

∑

j1≥1

· · ·
∑

jl≥1

j1+···+jl=k

(
k

j1, · · · , jl

)(−2

l

)
2l

for all k = 1, 2, · · · . Find the skewness, kurtosis, and pdf of X .

10
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2.8.1 Answer

Consider the mgf M(t) of X . For some ϵ > 0, the following holds for t ∈ (−ϵ, ϵ).

M(t) = 1 +

∞∑

k=1

mk
tk

k!

= 1 +
∞∑

k=1

(−1)k
k∑

l=1

∑

j1≥1

· · ·
∑

jl≥1

j1+···+jl=k

(
k

j1, · · · , jl

)(−2

l

)
2l
tk

k!

= 1 +
∞∑

k=1

k∑

l=1

∑

j1≥1

· · ·
∑

jl≥1

j1+···+jl=k

(−2

l

)
2l

(−t)k

j1! · · · jl!

= 1 +
∞∑

k=1

k∑

l=1

(−2

l

)
2l
∑

j1≥1

· · ·
∑

jl≥1

j1+···+jl=k

(−t)j1

j1!
· · · (−t)jl

jl!

= 1 +
∞∑

l=1

(−2

l

)
2l
∑

j1≥1

· · ·
∑

jl≥1

(−t)j1

j1!
· · · (−t)jl

jl!

= 1 +

∞∑

l=1

(−2

l

)
2l




∞∑

j=1

(−t)j

j!




l

= 1 +
∞∑

l=1

(−2

l

)
2l
(
e−t − 1

)l

=
(
1 + 2

(
e−t − 1

))−2

=

( 1
2e

t

1− 1
2e

t

)2

,

which is identical to the mgf of Negbin(2, 1/2). Now take logarithm to get the cgf.

C(t) = logM(t) = −2 log
(
1 + 2(e−t − 1)

)

= −2 log(1−
(
2t− t2 +

t3

3
− t4

12
+O(t5)

)

︸ ︷︷ ︸
A⃝

) (e−t − 1 = −t+ t2/2− t3/6 + t4/24 + · · · )

= 2A⃝+ A⃝2 +
2

3
A⃝3 +

1

2
A⃝4 +O(t5) (− log(1− x) = x+ x2/2 + x3/3 + x4/4 + · · · )

=

(
4t− 2t2 +

2

3
t3 − 1

6
t4 +O(t5)

)
+

(
4t2 − 4t3 +

7

3
t4 +O(t5)

)
+

(
16

3
t3 − 8t4 +O(t5)

)
+
(
8t4 +O(t5)

)

= 4t+ 2t2 + 2t3 +
13

6
t4 +O(t5)

= 4t+
4t2

2!
+

12t3

3!
+

52t4

4!
+O(t5),

which implies that c1 = 4, c2 = 4, c3 = 12, c4 = 52. Double check here: https://www.wolframalpha
.com/input?i2d=true&i=series+-2log%5C%2840%291%2B2%5C%2840%29exp%5C%2840%29-x%5C%

11
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2841%29-1%5C%2841%29%5C%2841%29. Hence, by Exercises 1.19 and 1.20,

skew(X) =
c3

c
3/2
2

=
3

2
,

kurt(X) =
c4
c22

=
13

4
.

From the definition of Negative-binomial distribution, the pdf f of X is given by

f(x) =

(
x− 1

2− 1

)(
1

2

)2(
1− 1

2

)x−2

I{2,3,4,··· }(x)

= (x− 1)2−xI{2,3,4,··· }(x)

• NOTE:제가시험장에있었다면,시간상 pdf는못구하고, skewness, kurtosis까지는구했을것같습니다.

12
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1 Lebesgue-Stieltjes Integral and Law of the Unconscious Statistician

1.1 Motivation

Recall that a random variable of mixed type does not assume its pdf. Then how do we define its expectation?
For instance, consider the following cdf.

FX(x) =





1− 1
2e

−3x, x ≥ 2
1
2 − 1

2e
−3x, 0 ≤ x < 2

0, x < 0

Note that FX is NOT differentiable since it is not even continuous at x = 2. In fact, the cdf FX of mixed
type random variable X is a 50-50 mixture of the following two distributions.

FXd
(x) = I[2,∞)(x) (Xd ∼ The Dirac Delta distribution concentrated at x = 2)

FXc
(x) = (1− e−3x)I[0,∞)(x) (Xc ∼ The Standard Exponential distribution of mean 1/3)

Henceforth, it is very natural to define the expectation by E(X) = 1
2E(Xd) +

1
2E(Xc) =

7
6 . Again, how do

we define its expectation without assuming the existence of pdf?

1.2 Simple Random Variables

One of the simplest random variable is an indicator random variable. Given a probability space (S,F ,P)
and an event E ∈ F , an indicator random variable IE is a function S → R defined by

IE(s) =

{
1, s ∈ E

0, s ̸∈ E
s ∈ S

We say an event E occurred if IE(s) = 1 and did not occur otherwise. Now we are going to handle a finite
linear combination of these indicator random variables.

Definition 1 (Simple Random Variable). Given a probability space (S,F ,P), a nonnegative random variable
X : S → R is said to be simple if X =

∑n
j=1 ajIEj

for some n ∈ N, aj ≥ 0, and events Ej ∈ F . That is,

X(s) =

n∑

j=1

ajIEj (s), s ∈ S

For example, if |S| < ∞ and F = P(S), then every random variable X is simple.

Definition 2 (Lebesgue-Stieltjes Integral of a Simple Random Variable). For a simple random variable X =∑n
j=1 ajIEj

, we define the expectation of X with respect to P by

EP(X) =

n∑

j=1

ajP(Ej).

1
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Mathematicians usually denote the left hand side by
∫
S
XdP. It is called the Lebesgue-Stieltjes integral of X with

respect to P.

For example, if E ∈ F is an event, then EP(IE) = P(E). There are possibly many representations for a
simple random variable, however the Lebesgue-Stieltjes integral is well-defined by the axioms of P. That
is, for E1, · · · , En, F1, · · · , Fm ∈ F ,

If
n∑

j=1

ajIEj
=

m∑

i=1

biIFi
, then

n∑

j=1

ajP(Ej) =
m∑

i=1

biP(Fi).

1.3 Nonnegative Random Variables

Proposition 1. Every nonnegative random variable X can be represented by a pointwise limit of a monotone
increasing sequence of simple random variables. That is, there exists a sequence {Xi}∞i=1 such that

lim
i→∞

Xi(s) = X(s) ∀s ∈ S (pointwise convergence)

X1(s) ≤ X2(s) ≤ · · · ∀s ∈ S (monotone increasing)

Xi is simple ∀i ∈ N (simple)

Proof. We give a brief sketch here. See명제 10.2.4 in해석개론 (김,김,계) for a rigor. Recall that X−1(a, b] =

{s ∈ S : a < X(s) ≤ b} = (a < X ≤ b) is an event. Hence define

X1 = IX−1(1,∞),

X2 =
1

2
IX−1( 1

2 ,
2
2 ]
+

2

2
IX−1( 2

2 ,
3
2 ]
+

3

2
IX−1( 3

2 ,2]
+ 2IX−1(2,∞),

X3 =
12∑

k=1

k − 1

4
IX−1( k−1

4 , k4 ]
+ 3IX−1(3,∞),

and so on. Then X1 ≤ X2 ≤ · · · are the desired simple random variables.

Figure 1: Visualization of X1 and X2

We have already defined the Lebesgue-Stieltjes integral of simple random variables. Hence one can apply
the definition to X1 ≤ X2 ≤ · · · presented above. Verify that P(X−1(a, b]) = P(a < X ≤ b) = FX(b)−FX(a).

2
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Following the notion of cdf FX , the Lebesgue-Stieltjes integrals of X1 ≤ X2 ≤ · · · are given as

EP(X1) = (1− FX(1)) ,

EP(X2) =
1

2

(
FX( 22 )− FX( 12 )

)
+

2

2

(
FX( 32 )− FX( 22 )

)
+

3

2

(
FX(2)− FX( 32 )

)
+ 2 (1− FX(2)) ,

EP(X3) =
12∑

k=1

k − 1

4

(
FX(k−1

4 )− FX(k4 )
)
+ 3 (1− FX(3)) ,

and so on. It seems very similar to the Riemann-Stieltjes integral presented in Section 5.5 of해석개론 (김,
김,계). Now we are ready to define Lebesgue-Stieltjes integral of a nonnegative random variable.

Definition 3 (Lebesgue-Stieltjes Integral of a Nonnegative Random Variable). Suppose X is a nonnegative
random variable. Let {Xi}∞i=1 be a monotone increasing sequence of simple random variables that converges to X

pointwise (as in the Proposition 1). Then the expectation (i.e, Lebesgue-Stieltjes integral) of X with respect to P is
defined by

EP(X) = lim
i→∞

EP(Xi)

Note that this integral may not be finite.

The Definitions 2 and 3 coincide for a simple random variable.

Theorem 1 (Monotone Convergence Theorem). The above Lebesgue-Stieltjes integral is well-defined.

Proof. See정리 10.3.1 in해석개론 (김,김,계).

This theorem asserts that the Definition 3 does NOT depend on the choice of {Xi}∞i=1.

1.4 General Random Variables

Definition 4 (Lebesgue-Stieltjes Integral of a General Random Variable). Suppose X : S → R is a random
variable. Then the expectation (i.e, Lebesgue-Stieltjes integral) of X with respect to P is defined by

EP(X) = EP(X
+)− EP(X

−)

if the two terms on the right hand side are both finite.

Proposition 2. EP(X) is defined if and only if EP(|X|) < ∞.

Proof. |X| = X+ +X−.

Proposition 3. Fix a real number x. Then, EP(XIX−1{x}) = xP(X−1{x}) = xP(X = x).

Proof. We assume x ≥ 0 first. Consider a constant sequence of simple random variables Xi = xIX−1{x} that
converges to XIX−1{x} pointwise. EP(Xi) = xP(X−1{x}) for all i = 1, 2, · · · . A similar argument is valid
for the case x < 0.

3
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Definition 5 (Absolute Continuity of a Random Variable). A random variable X : S → R is said to be abso-
lutely continuous on an open interval (a, b) if the cdf FX of X is absolutely continuous on the open interval,
i.e, there exists a nonnegative function fX such that

FX(x)− FX(a) =

∫ x

a

fX(t) dt

holds for all x ∈ (a, b).
A random variable is said to be absolutely continuous if it is absolutely continuous on the entire line R. In this
case, fX is called the pdf of X . Mathematicians says fX is the Radon-Nikodym derivative of FX .

Here are some remarks regarding absolute continuity.

• Note that absolute continuity is a bit weaker than differentiablity and a bit stronger than continuity.

• Every continuous, piecewise differentiable function is absolutely continuous.

Now we present an analogy to정리 5.5.5 in해석개론 (김,김,계).

Theorem 2. Suppose a random variable X : S → R is absolutely continuous on an open interval (a, b). Then,

EP(XIX−1(a,b)) =

∫ b

a

xfX(x) dx.

In particular, if X is absolutely continuous (on the entire line R), then

EP(X) =

∫ ∞

−∞
xfX(x) dx.

Proof. Beyond the scope of undergraduate analysis.

1.5 Back to the Beginning

Now we are able to rigorously compute the expectation E(X) where its cdf FX is given by

FX(x) =





1− 1
2e

−3x, x ≥ 2
1
2 − 1

2e
−3x, 0 ≤ x < 2

0, x < 0

(even if its pdf fX does not exist.) Verify that FX is absolutely continuous on (−∞, 2) with its derivative
3
2e

−3xI(0,2)(x) and also on (2,∞) with its derivative 3
2e

−3xI(2,∞)(x). Hence

EP(X) = EP(XIX−1(−∞,2)) + EP(XIX−1{2}) + EP(XIX−1(2,∞))

=

∫ 2

−∞
x
3

2
e−3xI(0,2)(x)dx+ 2P(X = 2) +

∫ ∞

2

x
3

2
e−3xI(2,∞)(x)dx

= 2P(X = 2) +
3

2

∫ ∞

0

xe−3xdx

= 1 +
1

6
=

7

6

4
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1.6 Law of the Unconscious Statistician (Very Optional)

Lemma 1 (Lebesgue-Stieltjes Probability on the Real Line). Given a probability space (S,F ,P), suppose X :

S → R is a random variable. Define B and PX by

B =
{
B ∈ P(R) : X−1(B) ∈ F

}

PX(B) = P(X−1(B)). (B ∈ B)

Then, PX((a, b]) = FX(b)− FX(a) for all a < b and (R,B,PX) is indeed a probability space.

Proof. (i) ∅ ∈ B since X−1(∅) = ∅ ∈ F .
(ii) If B ∈ B, then R \B ∈ B since X−1 (R \B) = X−1(R) \X−1(B) = S \X−1(B) ∈ F .
(iii) If {Bj}∞j=1 ⊆ B, then

⋃∞
j=1 Bj ∈ B since

X−1




∞⋃

j=1

Bj


 =

∞⋃

j=1

X−1 (Bj) ∈ F .

(iv) PX(∅) = P(X−1(∅)) = P(∅) = 0.
(v) PX(R) = P(X−1(R)) = P(S) = 1.
(vi) If {Bj}∞j=1 ⊆ B are disjoint events, then

PX




∞⋃

j=1

Bj


 = P


X−1




∞⋃

j=1

Bj




 = P




∞⋃

j=1

X−1(Bj)


 =

∞∑

j=1

P(X−1(Bj)) =
∞∑

j=1

PX(Bj).

From (i)-(vi), (R,B,PX) is a probability space. In particular, PX((a, b]) = P(X−1(a, b]) = FX(b)−FX(a).

Theorem 3 (Law of the Unconscious Statistician). Let u : R → R be a continuous real function. Then u ◦ X :

S → R and u : R → R are random variables defined in the probability spaces (S,F ,P) and (R,B,PX), respectively.
In particular, one has EP(u ◦X) = EPX

(u), or equivalently,

EP(u ◦X) =

∫ ∞

−∞
u dPX .

Proof. For simplicity, we assume u is nonnegative here. For B ∈ B, it is obvious that IB ◦X = IX−1(B) and
hence

EP(IB ◦X) = EP(IX−1(B)) = P(X−1(B)) = PX(B) = EPX
(IB).

Let {ui}∞i=1 be a monotone increasing sequence of simple functions that converges to u pointwise. Then
{ui ◦X}∞i=1 is monotone increasing and converges to u ◦X pointwise. Therefore,

EP(u ◦X) = lim
i→∞

EP(ui ◦X) = lim
i→∞

EPX
(ui) = EPX

(u).

The continuity assumption of u is necessary to ensure that (u ◦X)−1((−∞, x]) ∈ F for each x ∈ R.

As a final remark, statisticians write E(u(X)) = EP(u ◦X) if no confusion can arise. (e.g. E(X2 + logX))

5
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pdf를작성할때 support를반드시명시해야한다. 가령이항분포의 pdf로올바른표현은
(
n
x

)
px(1− p)n−xI{0,1,··· ,n}(x)이다.

name notation support probability density function moment generating function

이항분포 B(n, p) {0, 1, · · · , n}
(
n

x

)
pxqn−x (pet + q)n

Binomial 0 ≤ p ≤ 1 where q = 1− p for t ∈ R

음이항분포 Negbin(r, p) {r, r + 1, · · · }
(
x− 1

r − 1

)
prqx−r

(
pet

1− qet

)r

Neg. Bin. 0 ≤ p ≤ 1 where q = 1− p for t < − log q

포아송분포 Poisson(λ) {0, 1, · · · } e−λλx

x!
eλ(e

t−1)

Poisson λ ≥ 0 for t ∈ R

다항분포 Multi(n, (p1, · · · , pk)⊤) 1⃝ n!

x1! · · ·xk!
px1
1 · · · pxk

k




k∑

j=1

pje
tj




n

Multinomial
∑k

j=1 pj = 1, pj ≥ 0 for tj ∈ R

감마분포 Gamma(α, β) (0,∞)
1

Γ(α)βα
xα−1e−x/β (1− βt)−α

Gamma α, β > 0 for t < 1
β

베타분포 Beta(α, β) (0, 1)
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 E(Xk) = Γ(α+β)Γ(α+k)

Γ(α)Γ(α+β+k)

Beta α, β > 0 mgf exists for t ∈ R

베타이항분포 Betabin(n, α, β) {0, 1, · · · , n}
(
n
x

)Γ(α+β)Γ(α+x)Γ(β+n−x)
Γ(α)Γ(β)Γ(α+β+n) mgf exists for t ∈ R

Beta Bin. α, β > 0

역감마분포 invGamma(α, β) (0,∞)
1

Γ(α)βα
x−α−1e−

1
βx mgf does not exist

Inv. Gamma α, β > 0

로지스틱분포 L(µ, σ) (−∞,∞)
e−z

σ(1 + e−z)2
eµtΓ(1− σt)Γ(1 + σt)

Logistic µ ∈ R, σ > 0 where z = x−µ
σ for − 1

σ < t < 1
σ

정규분포 N(µ, σ2) (−∞,∞)
1√
2πσ

e−
(x−µ)2

2σ2 eµt+
1
2σ

2t2

Normal µ ∈ R, σ > 0 for t ∈ R

로그정규분포 Lognormal(µ, σ2) (0,∞)
1

x
√
2πσ

exp

(
− (log x− µ)2

2σ2

)
E(Xk) = ekµ+

1
2k

2σ2

Log Norm. µ ∈ R, σ > 0 HOWEVER mgf does not exist

t−분포 tν (−∞,∞)
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)
(
1 +

x2

ν

)− ν+1
2

mgf does not exist

Student’s t ν > 0

웨이불분포 Weibull(α, β) (0,∞)
α

βα
xα−1e−(x/β)α E(Xk) = βkΓ(1 + k

α )

Weibull α, β > 0 mgf exists if α ≥ 1

질문. 베르누이(Bernoulli),기하(Geometric),지수(Exponential),카이제곱(χ2),코시(Cauchy)분포를이표에서찾을수있겠는가?

1
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Notes

Parameters

f(x;µ, σ) =
1

σ
f0

(
x− µ

σ

)

꼴이면, µ, σ를각각 location, scale parameter라고부른다. 꼭평균,표준편차일필요는없다. θ−1가 scale parameter인경우보통
θ를 rate parameter라고부른다. 나머지경우일반적으로 shape parameter라고부른다.

Gamma Integral

α > 0에대하여감마함수는다음과같이정의된다.

Γ(α) =

∫ ∞

0

xα−1e−xdx

먼저부분적분을통해 Γ(α+ 1) = αΓ(α)를보일수있다:

Γ(α+ 1) =

∫ ∞

0

xαe−xdx

=
[
xαe−x

]0
∞ +

∫ ∞

0

αxα−1e−xdx = αΓ(α)

Γ(1) = 1이므로 n = 0, 1, · · ·일때 Γ(n+ 1) = n!임을알수있다.

Beta Integral

α, β > 0에대하여

Γ(α)Γ(β) =

∫ ∞

0

xα−1e−xdx

∫ ∞

0

yβ−1e−ydy

=

∫ ∞

0

∫ ∞

0

xα−1yβ−1e−x−ydxdy

여기서 x = zw, y = z(1− w)치환하면
∂(x, y)

∂(z, w)
=

∣∣∣∣∣
w z

1− w −z

∣∣∣∣∣ = −z이므로

Γ(α)Γ(β) =

∫ 1

0

∫ ∞

0

(zw)α−1(z(1− w))β−1e−zzdzdw

=

∫ 1

0

wα−1(1− w)β−1dw

∫ ∞

0

zα+β−1e−zdz

︸ ︷︷ ︸
=Γ(α+β)

따라서 α, β > 0에대하여베타함수를 B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
라고정의하면

B(α, β) =

∫ 1

0

wα−1(1− w)β−1dw

가성립한다. 질문. Γ( 12 ) =
√
π임을보일수있겠는가? Hint. θ ∈ [0, π

2 ]에대하여 w = sin2 θ.

2
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Derivation

X ∼ B(n, p)이면 t ∈ R에대하여

E(etX) =

n∑

x=0

etx
(
n

x

)
pxqn−x =

n∑

x=0

(
n

x

)
(pet)xqn−x = (pet + q)n

X ∼ Negbin(r, p)이면 qet < 1일때

E(etX) =

∞∑

x=r

etx
(
x− 1

r − 1

)
prqx−r =

∞∑

x=r

(
x− 1

r − 1

)
(pet)r(qet)x−r =

(
pet

1− qet

)r ∞∑

x=r

(
x− 1

r − 1

)
(1− qet)r(qet)x−r

︸ ︷︷ ︸
=1

X ∼ Poisson(λ)이면 t ∈ R에대하여

E(etX) =

∞∑

x=0

etx
e−λλx

x!
= e−λ

∞∑

x=0

(λet)x

x!
= e−λ+λet

X ∼ Multi(n, (p1, · · · , pk)⊤)이면 t1, · · · , tk ∈ R에대하여

E(et1X1+···+tkXk) =
∑

x1+···+xk=n

et1x1+···+tkxk
n!

x1! · · ·xk!
px1
1 · · · pxk

k

=
∑

x1+···+xk=n

n!

x1! · · ·xk!
(p1e

t1)x1 · · · (pketk)xk

=
(
p1e

t1 + · · ·+ pke
tk
)n

X ∼ Gamma(α, β)이면 βt < 1일때

E(etX) =

∫ ∞

0

etx
1

Γ(α)βα
xα−1e−

1
β xdx

=
1

(1− βt)α

∫ ∞

0

1

Γ(α)

(
1

β
− t

)α

xα−1e−(
1
β−t)xdx

︸ ︷︷ ︸
=1

X ∼ Beta(α, β)이면 k = 1, 2, · · ·에대하여

E(Xk) =

∫ 1

0

xk Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1dx

=
Γ(α+ β)

Γ(α)Γ(β)

(
Γ(α+ β + k)

Γ(α+ k)Γ(β)

)−1 ∫ 1

0

Γ(α+ β + k)

Γ(α+ k)Γ(β)
xα+k−1(1− x)β−1dx

︸ ︷︷ ︸
=1

와같이 k−th moment를얻을수있을뿐만아니라, t ∈ R에대하여

E(etX) =

∫ 1

0

etx
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1dx

인데 x ∈ [0, 1]에서 etx ≤ e|t|이므로 E(etX) ≤ e|t|이다. 따라서mgf가모든 t ∈ R에대하여존재하고,정리 1.5.2에의거하여

E(etX) =
∞∑

k=0

E(Xk)

k!
tk =

Γ(α+ β)

Γ(α)

∞∑

k=0

tk

k!

Γ(α+ k)

Γ(α+ β + k)

3
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p ∼ Beta(α, β)이고 X|p ∼ B(n, p)이면 x ∈ {0, · · · , n}에대하여

P(X = x) =

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

(
n

x

)
px(1− p)n−xdp

=

(
n

x

)
Γ(α+ β)

Γ(α)Γ(β)

(
Γ(α+ β + n)

Γ(α+ x)Γ(β + n− x)

)−1 ∫ 1

0

Γ(α+ β + n)

Γ(α+ x)Γ(β + n− x)
pα+x−1(1− p)β+n−x−1dp

︸ ︷︷ ︸
=1

이고

E(X) = E[E(X|p)] = E[np] = n · Γ(α+ β)Γ(α+ 1)

Γ(α)Γ(α+ β + 1)
=

nα

α+ β

일반적으로 t ∈ R에대하여

E(etX) = E[E(etX |p)] = E
[(
1 + p(et − 1)

)n]

= E

[
n∑

k=0

(
n

k

)
pk(et − 1)k

]

=

n∑

k=0

(
n

k

)
E
[
pk
]
(et − 1)k

=
Γ(α+ β)

Γ(α)

n∑

k=0

(
n

k

)
Γ(α+ k)

Γ(α+ β + k)
(et − 1)k

X ∼ invGamma(α, β)이면 t > 0에대하여

E(etX) =

∫ ∞

0

etx
1

Γ(α)βα
x−α−1e−

1
βx dx

인데 x ≥ M =⇒ tx− (α+ 1) log x− 1
βx > t

2x를만족하는M > 0이존재하고

∫ ∞

M

e
t
2xdx = ∞

이므로 mgf는존재하지않는다. Note. 역감마분포에서 k−th moment의존재성은 α와 k의대소와관련되어있다. α > 0이기만

하면분포가잘정의되지만, k−th moment를가지려면 α > k여야한다. 이경우,

E(Xk) =

∫ ∞

0

xk 1

Γ(α)βα
x−α−1e−

1
βx dx

=
Γ(α− k)

Γ(α)βk

∫ ∞

0

1

Γ(α− k)βα−k
x−(α−k)−1e−

1
βx dx

︸ ︷︷ ︸
=1

X ∼ L(µ, σ)이면 |σt| < 1일때 z = x−µ
σ 에대하여 dz = 1

σdx이고 w = 1
1+e−z 에대하여 dw = e−z

(1+e−z)2 dz이므로

E(etX) =

∫ ∞

−∞
etx

e−z

σ(1 + e−z)2
dx =

∫ ∞

−∞
et(µ+σz) e−z

(1 + e−z)2
dz

= eµt
∫ 1

0

(
w

1− w

)σt

dw

= eµtΓ(1− σt)Γ(1 + σt)

∫ 1

0

Γ(2)

Γ(1 + σt)Γ(1− σt)
w1+σt−1(1− w)1−σt−1dw

︸ ︷︷ ︸
=1

4
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X ∼ N(µ, σ2)이면 t ∈ R일때 z = x−µ
σ 에대하여 dz = 1

σdx이므로

E(etX) =

∫ ∞

−∞
etx

1√
2πσ

e−
(x−µ)2

2σ2 dx =

∫ ∞

−∞
et(µ+σz) 1√

2π
e−z2/2dz

= eµt+
1
2σ

2t2
∫ ∞

−∞

1√
2π

e−(z−σt)2/2dz

︸ ︷︷ ︸
=1

X ∼ Lognormal(µ, σ2)이면 k = 0, 1, · · ·에대하여

E(Xk) =

∫ ∞

0

xk 1

x
√
2πσ

exp

(
− (log x− µ)2

2σ2

)
dx

=

∫ ∞

−∞
eky

1√
2πσ

exp

(
− (y − µ)2

2σ2

)
dy (y = log x)

= ekµ+
1
2k

2σ2

(정규분포의mgf유도과정을다시살펴보자)

그럼에도불구하고임의의 t > 0에대하여 E(etX) = ∞임을보인적이있다.
X ∼ tν면 t > 0에대하여

E(etX) =

∫ ∞

−∞
etx

Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)
(
1 +

x2

ν

)− ν+1
2

dx

인데역감마함수와같은논증으로mgf는존재하지않는다. (x → ∞일때피적분함수가발산한다.) Note. 역감마분포와마찬가지로
k−th moment의존재성은 ν와 k의대소와관련되어있다. ν > 0이기만하면분포가잘정의되지만, k−th moment를가지려면
ν > k여야한다. 이경우, pdf가 even function이므로 k가 odd일때 E(Xk) = 0이고 k가 even일때 x ≥ 0에대하여

z =
x2

ν + x2
x =

√
νz

1− z
dx =

1

2

√
ν

z(1− z)3
dz

로치환하면

E(Xk) =

∫ ∞

−∞
xk Γ

(
ν+1
2

)
√
νπΓ

(
ν
2

)
(
1 +

x2

ν

)− ν+1
2

dx

=
2Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)
∫ ∞

0

xk

(
1 +

x2

ν

)− ν+1
2

dx (pdf and k are even)

=
2Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)
∫ 1

0

(
νz

1− z

) k
2

(1− z)
ν+1
2

1

2

√
ν

z(1− z)3
dz (substitute x by z)

=
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)ν k+1
2

∫ 1

0

z
k+1
2 −1(1− z)

ν−k
2 −1dz

=
1√

νπΓ
(
ν
2

)ν k+1
2 Γ

(
k + 1

2

)
Γ

(
ν − k

2

)
(Beta Integral)

=
Γ
(
1
2 +m

)
Γ
(
ν
2 −m

)

Γ
(
1
2

)
Γ
(
ν
2

) νm (Let m = k
2 ∈ Z)

다시한번강조하지만,이모든논의는 ν > k일때가능한것이다.
X ∼ Weibull(α, β)이면 (α, β > 0)

z =

(
x

β

)α

dz =
α

β

(
x

β

)α−1

dx

5
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로치환하여

E(Xk) =

∫ ∞

0

xk α

βα
xα−1e−(x/β)αdx = βk

∫ ∞

0

zk/αe−zdz = βkΓ

(
1 +

k

α

)

를얻는다.
이상의 논의는 모든 α, β > 0에 대하여 성립했으나, 웨이불분포의 mgf가 존재하기 위해서는 α ≥ 1이어야 함이 알려져 있다.
α > 1인경우에는 t ∈ R에대하여

E(etX) =

∫ ∞

0

etx
α

βα
xα−1e−(x/β)αdx =

∫ ∞

0

exp
(
βtz1/α − z

)
dz

인데 z ≥ M =⇒ βtz1/α ≤ z
2가성립하는M > 0이존재하고

∫ ∞

M

exp
(
−z

2

)
< ∞

이므로mgf가모든 t ∈ R에대하여존재한다. 이제는정리 1.5.2에의거하여

E(etX) =
∞∑

k=0

E(Xk)

k!
tk =

∞∑

k=0

(βt)k

k!
Γ

(
1 +

k

α

)

라고적을수있다. 정확하게 α = 1인경우에는 βt < 1인 t에대하여mgf가존재할것이다. 그리고이경우는지수분포에해당한다.
(다음절을참조하라.)

Related Distributions

Bernoulli(p)
d
= B(1, p) px(1− p)1−xI{0,1}(x) (베르누이 Bernoulli분포)

Geo(p)
d
= Negbin(1, p) p(1− p)x−1I{1,2,··· }(x) (기하 Geometric분포)

Exp(β)
d
= Gamma(1, β)

1

β
e−x/βI(0,∞)(x) (지수 Exponential분포)

χ2
ν

d
= Gamma

(ν
2
, 2
) 1

Γ
(
ν
2

)
2ν/2

x
ν
2−1e−x/2I(0,∞)(x) (카이제곱 χ2 분포)

Cauchy(0, 1)
d
= t1

1

π(1 + x2)
I(−∞,∞)(x) (코시 Cauchy분포)

Unif(0, 1)
d
= Beta(1, 1) I(0,1)(x) (균등 Uniform분포)

Generalized Gamma Distribution

name notation support probability density function moment generating function

일반화된감마분포 GG(d, p, β) (0,∞)
p

Γ (d/p)βd
xd−1e−(x/β)p E(Xk)

Generalized Gamma d, p, β > 0 mgf exists if p ≥ 1

Note. p = 1이면감마분포가되고, d = p이면웨이불분포가되고, d = 1, p = 2이면반정규 Half Normal분포(정규분포를따르는
확률변수의절대값을생각)가된다.
X ∼ GG(d, p, β)이면 (d, p, β > 0)

z =

(
x

β

)p

dz =
p

β

(
x

β

)p−1

dx

6
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로치환하여 k = 0, 1, 2, · · ·에대하여

E(Xk) =

∫ ∞

0

xk p

Γ (d/p)βd
xd−1e−(x/β)pdx

=
βk

Γ (d/p)

∫ ∞

0

(
x

β

)d+k−p

· e−(x/β)p · p
β

(
x

β

)p−1

dx

=
βk

Γ (d/p)

∫ ∞

0

z
d+k−p

p e−zdz

= βk
Γ
(

d+k
p

)

Γ
(

d
p

)

더나아가 p ≥ 1이라면mgf가존재한다. 정확히 p = 1이라면앞서다룬감마분포에해당하게된다. p > 1이라면 t ∈ R에대하여

E(etX) =

∫ ∞

0

etx
p

Γ (d/p)βd
xd−1e−(x/β)pdx

=
1

Γ (d/p)

∫ ∞

0

etx ·
(
x

β

)d−p

· e−(x/β)p · p
β

(
x

β

)p−1

dx

=
1

Γ (d/p)

∫ ∞

0

exp

(
βtz1/p +

d− p

p
log z − z

)
dz

M > 0이존재하여 z > M이면 exp (·)안의항이 −z/2보다작게된다. 그리고

∫ ∞

M

exp
(
−z

2

)
dz < ∞

이므로mgf가모든 t ∈ R에대하여존재한다. 이제정리 1.5.2를적용할수있다.

CDF and Sampling Theory

P(X ≤ x) = F (x)이고 U ∼ unif(0, 1)이라고할때 X와 F−1(U)는정확히같은분포가됨을지난번 2.pdf에서밝혔었다. F의
inverse가존재하면그대로사용하면되고,존재하지않는다면다음의 generalized version을사용하는것이다.

F−1(u) = inf {y ∈ R : F (y) ≥ u} 0 < u < 1

이것은항상잘정의되는것을역시밝혔었다.
X ∼ Exp(β)면 pdf와 cdf가각각 f(x) = 1

β e
−x/βI(0,∞)(x)와

F (x) =

{
1− e−x/β x > 0

0 x ≤ 0

으로주어지므로 X
d
= −β log(1− U)가성립한다.

응용. CDF를통한 sampling은로지스틱분포에서도유효하다.
X ∼ Gamma(α, θ), Y ∼ Gamma(β, θ)이고 X ⊥⊥ Y 이면 X,Y 의 joint pdf는

f(x, y) =
1

Γ(α)Γ(β)θα+β
xα−1yβ−1e−(x+y)/θI(0,∞)(x)I(0,∞)(y)

로주어지므로 x = zw, y = z(1− w)로치환하여W = X
X+Y ∼ Beta(α, β)임을확인할수있다.

7
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1 Drills and Skills: Random Vectors and Change of Variables

1.1 Recap: Differential and Regularity

Definition 1 (Differential). Let F : Rn → Rm be a (real) multivariable differentiable function. If one writes F by

F (x1, · · · , xn) = (F1(x1, · · · , xn), · · ·Fm(x1, · · · , xn)) ,

then for given p ∈ Rn, the differential dFp of F at p is an R-linear map Rn → Rm represented by an m× n matrix,

dFp =




∂F1

∂x1
(p) · · · ∂F1

∂xn
(p)

...
. . .

...
∂Fm

∂x1
(p) · · · ∂Fm

∂xn
(p)


 ,

with respect to the standard coordinate of Euclidean spaces.

• Note: There are a number of equivalent notations for the differential.

dFp = dpF = DFp = DpF =
∂F

∂x
(p) =

∂(F1, · · · , Fm)

∂(x1, · · · , xn)
(p) = JF (p) = ∇F (p) = F ′(p) = Ḟ (p) = · · ·

Definition 2 (Regularity). Let F : Rn → Rm be a (real) multivariable differentiable function. A point p in the
domain, i.e, Rn is said to be a regular point of F if dFp is surjective, that is,

rank dFp = dim im dFp = m.

A value c in the codomain, i.e, Rm is said to be a regular value of F if F−1(c) = ∅ or every point in F−1(c) is
regular. A point that is not regular is called critical. A value that is not regular is called critical.

• Example: Consider f : R → R given by f(x) = 2x3 − 3x2. Then, 0 and 1 are the only critical points; 0
and −1 are the only critical values.

• Example: Consider f : R2 → R given by f(x, y) = x2 − y2. Then, (0, 0) is the only critical point; 0 is
the only critical value.

1.2 Recap: Inverse Function Theorem

Now we focus on the special case m = n. In this case, as described in the Linear Algebra class, given p ∈ Rn,
the followings are equivalent:

• dFp is surjective, i.e, p is a regular point by definition.

• dFp is of full rank, namely, n.

• dFp is invertible.

• det dFp ̸= 0.

• dFp is an R-vector space isomorphism.

1
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In fact, the Inverse Function Theorem says more than this.

Theorem 1 (Inverse Function Theorem). Suppose F : Rn → Rn is continuously differentiable. If dFp is invertible
for some p ∈ Rn, then F is a local C1-diffeomorphism at p. That is, there exists an open neighborhood U of p such that
F |U : U → F (U) has its inverse F−1 : F (U) → U which is continuously differentiable. Moreover, for all c ∈ F (U),
the inverse F−1 satisfies

(dF−1)c = (dFF−1(c))
−1.

• The theorem writes in a more familiar way for the case n = 1:

(f−1)′(c) =
1

f ′(f−1(c))
.

1.3 Random Vectors and Change of Variables

A random vector is defined in a canonical way. To elaborate on this, for each j = 1, · · · , n, consider a
function πj : Rn → R defined by

πj(x1, · · · , xn) = xj

Such πj is called the canonical projection, or equivalently, canonical surjection.

Definition 3 (Random Vector). Given a probability space (S,F ,P), an n-dimensional random vector (-차원
확률 벡터) or n-variate random variable (-변량 확률 변수) is a function X : S → Rn such that πj ◦ X is a
random variable for all j = 1, · · · , n.

• Note: In analogy to the case n = 1, an n-dimensional random variable is called absolutely continuous
if

P(X ≤ (x1, · · · , xn)) =

∫ x1

−∞
· · ·
∫ xn

−∞
fX(t1, · · · , tn) dtn · · · dt1

for some fX : Rn → R≥0, which is called the pdf of X .

Theorem 2 (Change of Variables). Suppose X : S → Rn is an absolutely continuous n-dimensional random
vector endowed with a pdf fX . If an n-dimensional (real) continuously differentiable function u : Rn → Rn is defined
almost everywhere and assumes almost every regular point, i.e,

P (∥u(X)∥ < ∞) = 1, P (det duX ̸= 0) = 1,

then Y := u ◦X is an absolutely continuous n-dimensional random vector endowed with a pdf fY given by

fY (y) =
∑

x∈u−1(y)

fX(x)

|det dux|
,

which is defined for all regular values y ∈ Rn of u. This pdf is well-defined since Y is regular almost surely.

Proof. See Theorem 2.47 in (Folland, 1999). (It is beyond the scope of undergraduate calculus and analysis.)
Or equivalently, see정리 4.1.2 (다대일변환을통한확률변수의치환법) in the textbook (수리통계학).

2
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• Note: One may memorize the formula in an intuitive way: fY (y)|dy| = fX(x)|dx|.

• Note: If y is a regular value of u, then det dux ̸= 0 for all x ∈ u−1(y) by definition. Hence, the fraction
on right hand side of the theorem makes sense.

• Remark: The assumption that X is regular almost surely is essential. Consider the following example.

Y = u(X), X ∼ N(0, 1), u(x) = e−1/xI(0,∞)(x)

Then, u is an element in C∞(R) (the space of real smooth functions), i.e, has derivatives of all orders
at all points x ∈ R. However, Y = u(X) may and does not admit a pdf since only positive points x

are regular and P(X > 0) ̸= 1. Can you identify the cdf of Y instead?

2 Exercises: One-Dimensional

THE BASIS OF YOUR NEW KNOWLEDGE SHOULD BE YOUR PREVIOUS KNOWLEDGE.

2.1

Suppose the pdf of a random variable X is given by

fX(x) =
1

2
I(−1,1)(x) (called the Uniform distribution supported on (−1, 1))

Find the pdf of Y = X2. Can you identify the distribution to a known one?

2.1.1 ANSWER

Let u : (−1, 1) → R be defined by y = u(x) = x2. Observe that P(Y = u(X) ∈ (0, 1)) = 1 and u−1(y) =

{−√
y,
√
y} for all y ∈ (0, 1). Hence one has

fY (y) = fX(−√
y)

∣∣∣∣−
d

dy

√
y

∣∣∣∣+ fX(
√
y)

∣∣∣∣
d

dy

√
y

∣∣∣∣ =
1

2
√
y
I(0,1)(y),

which is the pdf of Beta(1/2, 1).

2.2

Suppose the pdf of a random variable X is given by

fX(x) = e−xI(0,∞)(x) (called the standard Exponential distribution)

Find the pdf of Y = 1
(logX)2 .

3
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2.2.1 ANSWER

Define u : (0,∞) \ {1} → R by y = u(x) = 1/(log x)2. After checking some regularity conditions for y > 0,
one has

fY (y) = fX

(
e−1/

√
y
) ∣∣∣∣

d

dy
e−1/

√
y

∣∣∣∣+ fX

(
e1/

√
y
) ∣∣∣∣

d

dy
e1/

√
y

∣∣∣∣

=
1

2y
√
y

(
e−e−1/

√
y

e−1/
√
y + e−e1/

√
y

e1/
√
y
)
I(0,∞)(y).

2.3

Suppose the pdf of a random variable X is given by

fX(x) =
1

π(1 + x2)
I(−∞,∞)(x) (called the standard Cauchy distribution)

Find the pdf of Y = X2

1+X2 . Can you identify the distribution to a known one?

2.3.1 ANSWER

It is easily verified that Y ∼ Beta(1/2, 1/2).

2.4

Suppose the pdf of a random variable X is given by

fX(x) =
1√
2π

e−x2/2 (called the standard Normal distribution)

Find the pdfs of Y = eX and Z = X2, respectively. Can you identify the distributions to known ones?

2.4.1 ANSWER

Y ∼ the standard log-normal distribution. Z ∼ the χ2 distribution with degree of freedom 1.

2.5

Suppose the pdf of a random variable X is fX . Find the pdf of Y = µ+ σX for given µ ∈ R, σ > 0.

2.6

Suppose the pdf and cdf of a random variable X are given by fX and FX , respectively. Find the pdf of
Y = FX(X). Assume fX is continuous and does not vanish everyehere, i.e, fX > 0.

2.6.1 ANSWER

fY (y) =
1

σ
fX

(
y − µ

σ

)

4
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3 Exercises: Multi-Dimensional

YOU WILL BECOME MUCH STRONGER BY EMBRACING YOUR VULNERABILITIES.

3.1

Suppose the joint pdf of random variables (X,Y ) is given by

fX,Y (x, y) = 2e−x−2yI(0,∞)(x)I(0,∞)(y) (independent Exponential distributions)

Find the pdfs of Z = min(X,Y ) and W = max(X,Y ), respectively. Describe the distributions.

3.1.1 ANSWER

Consider a function u : (0,∞)2 → R2 that maps (X,Y ) to (Z,W ). Since P(Z < W ) = 1, one has

fZ,W (z, w) = fX,Y (z, w) + fX,Y (w, z) = 2
(
e−z−2w + e−2z−w

)
I(0 < z < w < ∞)

Some integrations show us that

fZ(z) =

∫ ∞

z

2
(
e−z−2w + e−2z−w

)
dw = 3e−3zI(0,∞)(z)

fW (w) =

∫ z

0

2
(
e−z−2w + e−2z−w

)
dz =

(
2
(
e−2w − e−3w

)
+ e−w − e−3w

)
I(0,∞)(w)

Note that Z = min(X,Y ) follows the Exponential distribution with the summed rate = 3.

3.2

Suppose the joint pdf of random variables (X,Y ) is given by

fX,Y (x, y) =
1

12
x2y3e−x−yI(0,∞)(x)I(0,∞)(y) (independent Gamma distributions with common rates)

Find the pdfs of Z = X + Y and W = X
X+Y , respectively. Describe the distributions.

3.2.1 ANSWER

Consider a function u : (0,∞)2 → R2 that maps (X,Y ) to (Z,W ). By restricting the codomain of u, its
inverse is well-defined by

u−1(z, w) = (zw, z(1− w)) ((z, w) ∈ (0,∞)× (0, 1))

The differential of inverse evaluated at (z, w) is given by

(du−1)(z,w) =

[
w z

1− w −z

]
,

5
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which has the determinant of −z. It follows that

fZ,W (z, w) = fX(zw, z(1− w))z =
1

12
(zw)2(z(1− w))3e−zz =

1

720
z6e−zI(0,∞)(z) · 60w2(1− w)3I(0,1)(w).

Hence Z and W are independent. Z ∼ Gamma(7, 1) and W ∼ Beta(3, 4).

3.3

Let X1, · · · , Xn be iid standard Uniform samples. That is,

fX1,··· ,Xn(x1, · · · , xn) = I(0,1)(x1) · · · I(0,1)(xn)

Rearrange the samples in a non-decreasing way, say, X(1) ≤ · · · ≤ X(n). Find the joint pdf of X(1) ≤ · · · ≤
X(n). Find the marginal pdf of X(j) for each j. Describe the distributions.

3.3.1 ANSWER

fX(1),··· ,X(n)
(x(1), · · · , x(n)) = n! I(0 < x(1) < · · · < x(n) < 1)

and

fX(j)
(x(j)) =

n!

(j − 1)!(n− j)!
(x(j))

j−1(1− x(j))
n−jI(0,1)(x(j))

hold. That is, X(j) ∼ Beta(j, n− j + 1) for 1 ≤ j ≤ n.

3.4

Suppose the joint pdf of random variables (X,Y ) is given by

fX,Y (x, y) =
1

30π
y5/2e−(x2+y)/2I(−∞,∞)(x)I(0,∞)(y) (independent Normal and Gamma distributions)

Find the pdfs of X , Y , and Z = X√
Y/7

, respectively. Hint: Consider a function u that maps (X,Y ) to (X,Z).

3.4.1 ANSWER

It is a bit easier to consider a function u : (X,Y ) 7→ (Z, Y ), not (X,Z). (My appologies...) Then u admits its
inverse defined by

u−1(z, y) = (x, y) =
(
z
√

y/7, y
)
.

Compute the differential and its determinant at (z, y).

(du−1)(z,y) =

[√
y/7 z

2
√
7y

0 1

]
, |det(du−1)(z,y)| =

√
y/7.

6



Apr 25 2023 수리통계 1튜터정준혁

It follows that

fZ,Y (z, y) =
1

30π
y5/2 exp

(
− (z

√
y/7)2 + y

2

)√
y

7

=
1

30π
√
7
y3 exp

(
−1 + z2/7

2
y

)
I(−∞,∞)(z)I(0,∞)(y).

Recall that
∫∞
0

y3e−λydy = Γ(4)λ−4 = 6λ−4. Integrating out y gives the marginal pdf of Z, as desired.

fZ(z) =

∫ ∞

0

fZ,Y (z, y) dy

=

∫ ∞

0

1

30π
√
7
y3 exp

(
−1 + z2/7

2
y

)
dy

=
6

30π
√
7

(
1 + z2/7

2

)−4

=
16

5π
√
7

(
1 +

z2

7

)−4

I(−∞,∞)(z).

• Note: In general, pdf of the Student’s t-distribution with degree of freedom ν is given by

fZ(z) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)
(
1 +

z2

ν

)− ν+1
2

.

For the case ν = 7,

Γ(4)√
7πΓ

(
7
2

) =
6√

7π 5
2 · 3

2 · 1
2

√
π

=
16

5π
√
7
.

References
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1 Drills, Drills, and Drills

1.1 김우철 (2015)

Suppose X ∼ Unif(−2, 3). Find the pdf of Y for the following cases, respectively.

(a) Y = 3 + 2 log
2 +X

3−X
(b) Y = 3

(
− log

3−X

5

)1/2

(c) Y = X2

1.1.1 ANSWER

fY (y) =
exp

(
y−3
2

)

2
(
1 + exp

(
y−3
2

))2 I(−∞,∞)(y),

fY (y) =
2

9
ye−y2/9I(0,∞)(y),

fY (y) =





1
5
√
y , y ∈ (0, 4)

1
10

√
y , y ∈ (4, 9)

0, otherwise

1.2 김우철 (2016)

Suppose X,Y ∼ iidGeo(p).

(a) Prove that U and V are independent where U = min(X,Y ) and V = X − Y .

(b) Find the distribution of Z = X
X+Y .

1.2.1 ANSWER

fU,V (u, v) =





fX,Y (u, u), v = 0

fX,Y (u+ v, u), v > 0

fX,Y (u, u− v), v < 0





= (1− p)2u+|v|−2p2I{1,2,··· }(u)IZ(v)

=
(
(2p− p2)(1− p)2u−2I{1,2,··· }(u)

)( p

2− p
(1− p)|v|IZ(v)

)

For m,n ∈ {1, 2, · · · } such that gcd(m,n) = 1,

fZ

(
m

m+ n

)
=

∞∑

k=1

fX,Y (mk, nk) =
∞∑

k=1

(1− p)(m+n)k−2p2 =
(1− p)m+n−2p2

1− (1− p)m+n
.

1
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1.3 김우철 (2016)

Suppose X ∼ Exp(λ) and Y ∼ Exp(µ) are independent. Define Z and W by

Z = min(X,Y ) W =




1, Z = X

0, Z = Y

(a) Find the joint distribution of Z and W .

(b) Prove that Z and W are independent.

1.3.1 SKETCH OF ANSWER

We can NOT apply Change of Variables here. Hint: For z > 0, verify that

P(Z > z|W = 1) = P(X > z|Y > X) =
P(Y > X > z)

P(Y > X)
=

∫∞
z

∫∞
x

fX,Y (x, y)dydx∫∞
0

∫∞
x

fX,Y (x, y)dydx

P(Z > z|W = 0) = P(Y > z|X > Y ) =
P(X > Y > z)

P(X > Y )
=

∫∞
z

∫∞
y

fX,Y (x, y)dxdy∫∞
0

∫∞
y

fX,Y (x, y)dxdy

Compare the two quantities.

1.4 김우철 (2015)

Suppose X1, X2 ∼ iidN(0, 1).

(a) Find the joint pdf of Y1 = X2
1 +X2

2 and Y2 = X1X2/Y1.

(b) Find the pdf of Z = X1/(X1 +X2).

1.4.1 ANSWER

(a) Consider a map u : (x1, x2) 7→
(
x2
1 + x2

2,
x1x2

x2
1+x2

2

)
. Obeserve that if (y1, y2) = u(x1, x2) for x1, x2 ∈ R such

that x2
1 − x2

2 ̸= 0, then u−1(y1, y2) = {(x1, x2), (x2, x1), (−x1,−x2), (−x2,−x1)}. In addition, one has

du(x1,x2) =
∂(y1, y2)

∂(x1, x2)
=


 2x1 2x2

x2(x
2
2−x2

1)

(x2
1+x2

2)
2

x1(x
2
1−x2

2)

(x2
1+x2

2)
2




and hence

|det du(x1,x2)| =
2|x2

1 − x2
2|

x2
1 + x2

2

,

2



May 02 2023 수리통계 1튜터정준혁

all of which coincide for (x1, x2) ∈ u−1(y1, y2). Now the Change of Variables formula asserts that

fY1,Y2(y1, y2) =
fX1,X2

(x1, x2)

|det du(x1,x2)|
× 4

=
1

2π
exp

(
−x2

1 + x2
2

2

)
2(x2

1 + x2
2)

|x2
1 − x2

2|

=

(
1

2
e−y1/2I(0,∞)(y1)

)(
2

π
√
1− 4y22

I(−1/2,1/2)(y2)

)
.

(b) Consider a map v : (x1, x2) 7→ (x1,
x1

x1+x2
).

fZ(z) =
1

1
2π
(
( z−1/2

1/2 )2 + 1
) IR(z) (∼ Cauchy(1/2, 1/2))

1.5 Unknown (2007, 2009)

Suppose X1, X2 are jointly distributed by

f1,2(x1, x2) =
1

π
I(0 < x2

1 + x2
2 < 1).

Define Y1 =
√

X2
1 +X2

2 and Y2 = X1/Y1.

(a) Find the joint pdf of Y1 and Y2.

(b) Find Cov(Y1, Y2).

1.5.1 ANSWER

Consider a map u : (x1, x2) 7→ (
√

x2
1 + x2

2, x1/
√

x2
1 + x2

2). Then u−1(y1, y2) = {(y1y2,±y1
√

1− y22)} for

(y1, y2) ∈ (0, 1)× (−1, 1) and

fY1,Y2(y1, y2) =
(
2y1I(0,1)(y1)

)
(

1

π
√

1− y22
I(−1,1)(y2)

)
.

Since Y1 and Y2 are independent, the covariance is zero.

1.6 이재용 (2009, 2020)

X1, X2, X3 are jointly distributed by

f1,2,3(x, y, z) = 90e−(x+2y+3z)I(0 < x < y < z < ∞).

Prove or disprove: X1, X2 −X1, X3 −X2 are mutually independent.

Note: There are at least two techniques you can apply. One is the joint mgf. The other is the change of variables.

3
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1.6.1 ANSWER OMITTED

1.7 김우철 (2016)

Suppose Z1, · · · , ZK are mutually independent and satisfy Zi ∼ Gamma(αi, β) for each i = 1, · · · ,K.

(a) Prove that

(
Z1∑K
1 Zi

, · · · , ZK−1∑K
1 Zi

)
∼ Dir (α1, · · · , αK) .

(b) Suppose W1 ∼ Dir(ω1, · · · , ωK),W2 ∼ Dir(ν1, · · · , νK), V ∼ Beta
(∑K

1 ωi,
∑K

1 νi

)
. Assume in addition

that W1,W2, V are mutually independent. Define Z by

Z = VW1 + (1− V )W2.

Prove that Z ∼ Dir(ω1 + ν1, · · · , ωK + νK).

(c) Suppose Y = (Y1, · · · , YK−1) ∼ Dir(α1, · · · , αK). For each i = 1, · · · ,K − 1, prove that Yi and

Y−i =

(
Y1

1− Yi
, · · · , Yi−1

1− Yi
,
Yi+1

1− Yi
, · · · , YK−1

1− Yi

)

are independent.

1.7.1 ANSWER

(a) See Lecture Note.

(b) Suppose that Ωi ∼ Gamma(ωi, 1) and Ni ∼ Gamma(νi, 1) for each i = 1, · · · ,K and that they are all

mutually independent. Define Ω =
∑K

1 Ωi and N =
∑K

1 Ni. Then one has

W1
d
=

(
Ω1

Ω
, · · · , ΩK−1

Ω

)
⊥⊥ Ω ∼ Gamma(

K∑

1

ωi, 1)

W2
d
=

(
N1

N
, · · · , NK−1

N

)
⊥⊥ N ∼ Gamma(

K∑

1

νi, 1)

V
d
=

Ω

Ω+N

As a consequence,

Z = VW1 + (1− V )W2 =

(
Ω1 +N1

Ω+N
, · · · , ΩK−1 +NK−1

Ω+N

)
∼ Dir(ω1 + ν1, · · · , ωK + νK)

4
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since Ωi +Ni ∼ Gamma(ωi + νi, 1) for each i = 1, · · · ,K.

(c) Suppose Ai ∼ Gamma(αi, 1) are mutually independent for each i = 1, · · · ,K and write

Yj =
Aj∑K
i=1 Ai

for j = 1, · · · ,K − 1. We now prove the statement only for Y−1 without loss of generality.

Y−1 =

(
Y2

1− Y1
, · · · , YK−1

1− Y1

)

=

(
A2∑K
i=2 Ai

, · · · , AK−1∑K
i=2 Ai

)
∼ Dir(α2, · · · , αK)

and Y−1 ⊥⊥ (A1,
∑K

i=2 Ai). Observe that Y1 is given by a function of A1 and
∑K

i=2 Ai. Concretely,

Y1 =
A1∑K
i=1 Ai

=
A1

A1 +
∑K

i=2 Ai

holds. It concludes that Y−1 ⊥⊥ Y1.

5
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0 Preliminaries (Common) - Matrix Series and Exponentiation Map

Let A be any n× n matrix. We define the matrix exponentiation map exp by

exp(A) = In +
∞∑

j=1

1

j!
Aj = In +A+

1

2
A2 +

1

6
A3 + · · ·

Proposition 1. Suppose A = SJS−1 is the Jordan canonical form of the matrix A. Then,

exp(A) = S exp(J)S−1.

Corollary 1 (Jacobi’s formula).

det exp(A) = etrA.

Proposition 2. Suppose γ(t) = exp(tA) for t ∈ R. Then one has γ(s+ t) = γ(s)γ(t), γ(0) = In, and

dj

dtj

∣∣∣∣
t=0

γ(t) = Aj

for all j = 1, 2, · · · .

Proposition 3. If AB = BA, then exp(AB) = exp(BA). In particular, exp(λA) = eλ exp(A) for λ ∈ R.

Proposition 4. If the spectral radius of A is strictly lesser than 1, i.e, every (possibly complex) eigenvalue of A has a
norm lesser than 1, then

In +
∞∑

j=1

Aj = (In −A)−1,

∞∑

j=1

jAj−1 = (In −A)−2.

• 위의 사실들은 수리통계학을 떠나서 굉장히 잘 알려진 상식입니다. 선형대수학 2 등의 기본적인 강좌는
물론이고,앞으로여러분야에서튜티여러분이접할일이있을것입니다.

• 하지만수리통계학교과서에서는정리 3.4.2에도나타나듯이,의도적으로행렬표현을숨기고있습니다.

• 따라서이페이지는지금 100%이해하지못하더라도무방합니다. 그러나,아래에서서술할베르누이과정과
포아송과정사이의 analogy는분명하게이해해야할것입니다.

1
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1 Introduction to Stochastic Processes (기초확률과정론)

THE BASIS OF STOCHASTIC PROCESSES IS THE GAMBLING THEORY. AS A REASON, ONE OF THE MOST

INTRINSIC TOPICS IN MARKOV CHAINS IS CALLED ”GAMBLER’S RUIN.”

1.1 Markov Chain - Motivation

Pop quiz: Let (X1, X2, · · · ) be a sequence of iid Bernoulli random variables with parameter p = 1/2. Define

W = min{t ∈ {1, 2, · · · } : Xt−2 = 1, Xt−1 = 0, Xt = 1}.

Find E(W ). https://math.stackexchange.com/questions/816140/why-is-the-expected-number
-coin-tosses-to-get-hth-is-10

First Attempt. Make a graph that represents the transition probability.

2
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Second Attempt. This looks a bit easier.

Final Attempt.

P(W = w) =
1

2

[
0 0 1

]


1/2 0 1/2

1/2 1/2 0

0 1/2 0




w−1 

1

0

0


 I{1,2,··· }(w).

The probability decays exponentially w.r.t. w (by the maximal eigenvalue argument). Hence, one can assert
that E(W ) =

∑
w wP(W = w) < ∞. Indeedly, by appealing to the Proposition 4, one has

E(W ) =
1

2

[
0 0 1

] ∞∑

w=1

w



1/2 0 1/2

1/2 1/2 0

0 1/2 0




w−1 

1

0

0




=
1

2

[
0 0 1

]



1/2 0 −1/2

−1/2 1/2 0

0 −1/2 1




−2 

1

0

0


 =

1

2

[
0 0 1

]
22



2 1 1

2 2 1

1 1 1




2 

1

0

0


 = 10.

3
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1.2 Homogeneous Bernoulli Process

Homogeneous Bernoulli Process (동차 베르누이 과정) of parameter p is a discrete-time homogeneous
counting Markov process (Nt)

∞
t=0 ⊆ {0, 1, 2, · · · } with N0 = 0, defined by a transition probability (전이

확률) as follows.

P(Nt+1 = nt+1|Nt = nt) =





p, nt+1 = nt + 1

1− p, nt+1 = nt

0, otherwise

(Or equivalently, N0 = 0 and Nt =
∑t

j=1 Xj where (Xj)
∞
j=1 is a sequence of iid Bernoulli random variables.)

• ”Homogeneous” means that p does not depend on time t.

• ”Discrete-time” means that t = 0, 1, 2, · · · .

• ”Counting” means that Nt = 0, 1, 2, · · · .

• ”Markov” means that for all t,

P(Nt+1|N0, N1, · · · , Nt) = P(Nt+1|Nt)

Let

A =




1− p 0 0 · · ·
p 1− p 0 · · ·
0 p 1− p · · ·
...

...
...

. . .



, g(t) =




P(Nt = 0)

P(Nt = 1)
...


 , g(0) =




1

0
...


 .

Then, one has g(t+ 1) = Ag(t) for all t. Hence,

g(t) = Atg(0) =




(1− p)t

t(1− p)t−1p
t(t−1)

2 (1− p)t−2p2

...



. (can be proved via induction on t)

Related distributions: Write Wr = min{t : Nt ≥ r} (Waiting Time)

• Binomial distribution: Nt ∼ Bin(t, p)

• Discrete Uniform distribution: W1|NT = 1 ∼ Unif{1, 2, · · · , T}

• Hypergeometric distribution: Nt|NT = r ∼ Hypergeo(r, T, t)

• Geometric distribution: W1 ∼ Geo(p)

• Negative binomial distribution: Wr ∼ NegBin(r, p)

4
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1.3 Homogeneous Poisson Process

Homogeneous Poisson Process (동차 포아송 과정) of parameter λ is a continuous-time homogeneous
counting Markov process (Nt : t ≥ 0) ⊆ {0, 1, 2, · · · } with N0 = 0, defined by a transition probability
(전이확률) as follows.

P(Nt+h = nt+h|Nt = nt) =





λh+ o(h), nt+h = nt + 1

1− λh+ o(h), nt+h = nt

o(h), otherwise

• ”Homogeneous” means that λ does not depend on time t.

• ”Continuous-time” means that t ∈ [0,∞).

• ”Counting” means that Nt = 0, 1, 2, · · · .

• ”Markov” means that for all t, h > 0,

P(Nt+h|Ns, s ≤ t) = P(Nt+h|Nt)

Let

A =




−λ 0 0 · · ·
λ −λ 0 · · ·
0 λ −λ · · ·
...

...
...

. . .



, g(t) =




P(Nt = 0)

P(Nt = 1)
...


 , g(0) =




1

0
...


 .

Then, one has g(t+ h) = (I + hA)g(t) + o(h) for all t, h ≥ 0. Hence, g′(t) = Ag(t) and

g(t) = exp(tA)g(0) = e−λt




1

λt
(λt)2

2
...



. (exp(tA) = e−λt exp(λtI + tA))

Related distributions: Write Wr = min{t : Nt ≥ r}.

• Poisson distribution: Nt ∼ Poisson(λt)

• Continuous Uniform distribution: W1|NT = 1 ∼ Unif(0, T )

• Beta distribution: 1
T Ws|NT = r ∼ Beta(s, r − s+ 1)

• Multinomial distribution: (NpT , NqT −NpT , NT −NqT )|NT = r ∼ Multi(r, (p, q−p, 1− q)) (Trinomial)

• Exponential distribution: W1 ∼ Exp( 1λ )

• Gamma distribution: Wr ∼ Gamma(r, 1
λ )

• Beta distribution: Ws

Wr
∼ Beta(s, r − s) (can be generalized to Dirichlet distribution)

5



May 09 2023 수리통계 1튜터정준혁

2 Exercises

2.1 김우철 (2016)

서울대학교 메일 계정에 수신되는 스팸메일의 수가 발생률 λS = 2(시간당)인 포아송 과정이다. 그리고 네이버
메일 계정에 수신되는 스팸메일의 수가 발생률 λN = 1(시간당)인 포아송 과정이며, 두 과정은 독립이다. 또한,
Vk는서울대학교메일계정에 k번째스팸메일이도착하기까지의걸린시간이고, Wk는네이버메일계정에 k번째

스팸메일이도착하기까지의걸린시간이다.
(a) X는서울대학교메일계정에오전 9시부터저녁 6시까지수신되는스팸메일의수라고정의하자. X의기댓값
과분산을구하여라.
(b) E[V10|V2]를계산하여라.
(c) V4/W2는 F분포임을밝히고,그모수값을구하여라.
(d) P(V2 > W1)을계산하여라.

2.2 김우철 (2015, 2017)

발생률이 λ인포아송과정 {Nt : t ≥ 0}에서 r번째현상이발생할때까지의시간을

Wr = min{t : Nt ≥ r} (r = 1, 2, · · · )

이라고할때,다음물음에답하여라.
(2015: a) Wr과 Nt의관계를이용하여다음등식이성립하는이유를설명하여라.

∫ t

0

λr

Γ(r)
yr−1e−λy dy =

∞∑

k=r

e−λt(λt)k

k!

(2015: b) Var[E(W3 +W4 +W5|W2)]를구하여라.
(2015: c) (W1,W2,W3)의분산행렬을구하여라.
(2015: d) W1,W2의일차함수 aW1 + bW2 + c로서

E[(W3 − (aW1 + bW2 + c))2]

을최소로하는 a, b, c를구하여라.
(2015: e) X = W2/W4, Y = W4/W5라고할때 X와 Y 의결합확률밀도함수를구하여라.
(2015: f) T = (1− 3X2 + 2X3)Y 4의확률밀도함수를구하여라.
(2017: a) X = W1/W2, Y = W3/W4라고할때 X와 Y 의결합확률밀도함수를구하여라.
(2017: b) Z = XY 3의확률밀도함수를구하여라.
(2017: c) T = (4X − 1)2의확률밀도함수를구하여라.
(2017: d) Cov(N3t, N5t|Nt)를구하여라.
(2017: e) E[Cov(Nt, N3t|N5t)]를구하여라.

6
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2.3 김우철 (2015, 2018)

서로독립이고성공률이 0 < p < 1인베르누이시행 X1, · · ·을관측하여 r(= 1, 2, · · · )번째성공까지의시행횟수
를Wr이라고할때다음에답하여라.
(2015: a) Cov(W1,W3)의값을구하여라.
(2015: b) Cov(W3,W4|W1)의값을구하여라.
(2018: a) W2 = x인조건에서 (W3,W4)

⊤의조건부확률밀도함수 pdf3,4|2(y, z|x)를구하여라.
(2018: b) Cov[E(W4|W2),E(W6|W2)]와 E[Cov(W4,W6|W2)]를구하여라.

2.4 김우철 (2018)

확률변수 X1, · · · , Xk가서로독립이고각각 Poisson(λi)분포 (i = 1, · · · , k)를따르고,

N = X1 + · · ·+Xk, X = (X1, · · · , Xk)
⊤

라고할때다음에답하여라.
(a) N = n인조건에서 X의조건부확률밀도함수 pdfX|N (x1, · · · , xk|n)을구하여라.
(b) Var[E(X|N)]과 E[Var(X|N)]을구하여라.

7
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Midterm 2 Solution

1

Suppose X1, X2 ∼ iid N(0, 1). Find the pdfs of

Y =
σX1 + µX2

X2
, Z =

X1X2√
X2

1 +X2
2

,

respectively.

1.1 Answer

(a) By the representative definition of the Cauchy destribution, one has X1/X2 ∼ Cauchy(0, 1), i.e, the
standard Cauchy distribution. Hence, scaling and translating give

fY (y) =
1

πσ
(
1 +

(
y−µ
σ

)2) IR(y).

One may write Y ∼ Cauchy(µ, σ).
(b) Consider a map u : (x1, x2) 7→ (z, w) where

z =
x1x2√
x2
1 + x2

2

, w =
x2
1 + x2

2

2
.

Note that u is a 4− 1 correspondence and that

∣∣∣∣det
∂(z, w)

∂(x1, x2)

∣∣∣∣ =
∣∣∣∣∣det

(
x3
2

(x2
1+x2

2)
3/2

x3
1

(x2
1+x2

2)
3/2

x1 x2

)∣∣∣∣∣

=
|x2

1 − x2
2|√

x2
1 + x2

2

=
√

2w − 4z2.

By appealing to the Change of Variables method, one has

fZ,W (z, w) = 4
fX,Y (x1, x2)√

2w − 4z2
=

√
2

π

e−w

√
w − 2z2

I(w > 2z2).

Integrate out w to attain the marginal pdf of Z.

fZ(z) =

∫ ∞

2z2

√
2e−w

π
√
w − 2z2

dw =

√
2e−2z2

π

∫ ∞

0

s−1/2e−sds (let s = w − 2z2 > 0)

=

√
2

π
e−2z2

. (Γ(1/2) =
√
π)

In fact, this is the pdf of N(0, (1/2)2).

1
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2

Suppose {Nt : t ≥ 0} is a homogeneous Poisson process of rate λ. Define Wr = min{t : Nt ≥ r} for each
r = 1, 2, · · · .
(a) Given positive integers 0 < k < l < m, find fY1|Y2

(y1|y2) where Y1 = Wk/Wm, Y2 = Wl/Wm.
(b) Find E(Y1Y2). (c) Find Cov(Y1, Y2).

2.1 Answer

(a) Let Z2 = Y2 − Y1. One has (Y1, Z2) ∼ Dir(k, l − k,m− l). That is,

fY1,Z2
(y1, z2) =

Γ(m)

Γ(k)Γ(l − k)Γ(m− l)
yk−1
1 zl−k−1

2 (1− y1 − z2)
m−l−1I∆2(y1, z2, 1− y1 − y2),

where

∆2 = {(a, b, c) ∈ R3 : a, b, c > 0 = a+ b+ c− 1}.

Since ’shearing’ (y1, z2) 7→ (y1, y1 + z2) = (y1, y2) has the Jacobian determinant 1,

fY1,Y2(y1, y2) =
Γ(m)

Γ(k)Γ(l − k)Γ(m− l)
yk−1
1 (y2 − y1)

l−k−1(1− y2)
m−l−1I(0 < y1 < y2 < 1).

It is obvious that Y2 is marginally beta-distributed:

fY2
(y2) =

Γ(m)

Γ(l)Γ(m− l)
yl−1
2 (1− y2)

m−l−1I(0 < y2 < 1).

Dividing the two preceding equations yields the conditional pdf:

fY1|Y2
(y1|y2) =

Γ(l)

Γ(k)Γ(l − k)

1

y2

(
y1
y2

)k−1(
1− y1

y2

)l−k−1

I

(
0 <

y1
y2

< 1

)
.

This shows that the conditional distribution Y1|Y2 is a scaled beta-distribution. That is,

Y1

Y2

∣∣∣∣Y2 ∼ Beta(k, l − k).

(b) By appealing to the law of iterated expectations,

E(Y1Y2) = E
[
E
(
Y1

Y2
Y 2
2

∣∣∣∣Y2

)]
= E

[
k

l
Y 2
2

]
=

k

l

l(l + 1)

m(m+ 1)
=

k(l + 1)

m(m+ 1)
.

(c) Since E(Y1) =
k
m and E(Y2) =

l
m , one has

Cov(Y1, Y2) =
k(l + 1)

m(m+ 1)
− k

m

l

m
=

k

m

m− l

m(m+ 1)
=

k(m− l)

m2(m+ 1)
.

2



May 16 2023 수리통계 1튜터정준혁

3

Consider the following hierarchical models.
(a) Find Y where Y |N ∼ Bin(N, p) and N ∼ Poi(λ).
(b) Find Y =

∑n
i=1 Xi where Xi|pi ∼ Ber(pi) and pi ∼ iid Beta(α, β).

(c) Find Y where Y |X ∼ N(0, 1/X) and X ∼ Gamma(n2 ,
2
n ).

3.1 Answer

All we need is the law of total probability.
(a) Y is discrete. Y ∼ Poi(λp) since

fY (y) =

∞∑

n=0

fY |N (y|n)fN (n) =

∞∑

n=y

(
n

y

)
py(1− p)n−y λ

ne−λ

n!

=
(λp)ye−λ

y!

∞∑

n=y

(λ(1− p))n−y

(n− y)!

=
(λp)ye−λ

y!
eλ(1−p) =

(λp)ye−λp

y!
I{0,1,2,··· }(y).

(b) Y is discrete. Y ∼ Bin(n, α/(α+ β)) since

fY (y) =
∑

x1+···+xn=y

∫

pn∈[0,1]

· · ·
∫

p1∈[0,1]

n∏

i=1

fXi|pi
(xi|pi)fpi(pi)dp1 · · · dpn

=
∑

x1+···+xn=y

∫

pn∈[0,1]

· · ·
∫

p1∈[0,1]

n∏

i=1

pxi
i (1− pi)

1−xi
Γ(α+ β)

Γ(α)Γ(β)
pα−1
i (1− pi)

β−1dp1 · · · dpn

=
∑

x1+···+xn=y

n∏

i=1

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)
pα+xi−1
i (1− pi)

β+1−xi−1dpi

=
∑

x1+···+xn=y

n∏

i=1

Γ(α+ β)Γ(α+ xi)Γ(β + 1− xi)

Γ(α)Γ(β)Γ(α+ β + 1)

=
∑

x1+···+xn=y

n∏

i=1

(
α

α+ β

)xi
(

β

α+ β

)1−xi

=

(
n

y

)(
α

α+ β

)y (
β

α+ β

)n−y

.

(c) Y is continuous. Y ∼ t(n) since

fy(y) =

∫ ∞

0

fY |X(y|x)fX(x) =

∫ ∞

0

x1/2

√
2π

e−xy2/2 (n/2)
n/2

Γ(n/2)
xn/2−1e−nx/2dx

=
(n/2)n/2√
2πΓ(n/2)

∫ ∞

0

x(n+1)/2−1e−(y2+n)x/2dx

=
(n/2)n/2√
2πΓ(n/2)

Γ((n+ 1)/2)

((y2 + n)/2)
(n+1)/2

=
Γ((n+ 1)/2)√

nπΓ(n/2)

(
1 +

y2

n

)−(n+1)/2

.

3
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4

(a) Suppose X ∼ Poi(1). Find the values a ∈ {0, 1, 2, · · · } such that E[ga(X)] exists where

ga(x) = (x− a)!I{a,a+1,··· }(x).

(b) Suppose X ∼ Gamma(α, 1) and Y ∼ Poi(x) for α ∈ N and x > 0. Show that P(X ≤ x) = P(Y ≥ α).

4.1 Answer

(a) For a = 2, 3, · · · , one has

E[ga(X)] =
∞∑

x=a

(x− a)!
e−1

x!
=

e−1

a− 1

∞∑

x=a

[
(x− a)!

(x− 1)!
− (x+ 1− a)!

(x+ 1− 1)!

]
=

e−1

a− 1

1

(a− 1)!
=

e−1

a!− (a− 1)!
.

It is obvious that E[ga(X)] = ∞ for a = 0, 1.
(b) Consider a homogeneous Poisson process of rate 1. Then X and Y represent Wα and Nx, respectively.
(Wα ≤ x) and (Nx ≥ α) are the same events.

5

Suppose X1, · · · , Xn1
∼ iid N(µ1, σ

2) and Y1, · · · , Yn2
∼ iid N(µ2, σ

2). Prove that

T =
(X − Y )− (µ1 − µ2)

Sp

√
n−1
1 + n−1

2

∼ t(n− 2)

for the pooled variance S2
p =

(n1−1)S2
1+(n2−1)S2

2

n−2 with n = n1 + n2.

5.1 Answer

By appealing to the normal sampling theory,

X − µ1 ∼ N(0,
σ2

n1
) (n1 − 1)S2

1/σ
2 ∼ χ2(n1 − 1)

Y − µ2 ∼ N(0,
σ2

n2
) (n2 − 1)S2

2/σ
2 ∼ χ2(n2 − 1)

and they are all independent. Hence,

Z =
(X − Y )− (µ1 − µ2)

σ
√

n−1
1 + n−1

2

∼ N(0, 1), V = (n− 2)S2
p/σ

2 ∼ χ2(n− 2)

are independent and T = Z√
V/(n−2)

∼ t(n− 2) by the representative definition of the t-distribution.

4
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6

Suppose X1, · · · , Xn ∼ iid L(0, 1) for n ≥ 2, i.e, f(x) = ex

(1+ex)2 . Find the pdf of

Y = log

(
1 + exp(−X(1))

1 + exp(−X(n))

)

where X(r) denotes the r-th order statistic for each r = 1, 2, · · · , n.

6.1 Answer

The cdf is given by F (x) = (1 + e−x)−1. By appealing to the theory of probability integral transform,

F (X(r))
d
= U(r)

where U1, · · · , Un ∼ iid Unif(0, 1). Note that Y = log(F (X(n))) − log(F (X(1)))
d
= logU(n) − logU(1). Recall

that (U(1), U(n)) are jointly distributed by

fU(1),U(n)
(u(1), u(n)) =

n!

(n− 2)!
(u(n) − u(1))

n−2I(0 < u(1) < u(n) < 1).

Now, consider a map

g : (u(1), u(n)) 7→ (v, y) = (− log u(1), log u(n) − log u(1)).

The inverse g−1 is given by (v, y) 7→ (e−v, ey−v) and hence the Jacobian determinant is given by

|det dg−1| =
∣∣∣∣∣det

(
−e−v 0

−ey−v ey−v

)∣∣∣∣∣ = ey−2v.

Apply the change of variables:

fV,Y (v, y) =
n!

(n− 2)!
(ey−v − e−v)n−2ey−2vI(0 < y < v < ∞).

Marginalize with respect to Y :

fY (y) =
n!

(n− 2)!
(ey − 1)n−2ey

∫ ∞

y

e−nvdv

= (n− 1)(ey − 1)n−2eye−ny

= (n− 1)e−y(1− e−y)n−2I(0,∞)(y).

As a remark, for y > 0,

fY (y) =
d

dy
(1− e−y)n−1.

5
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7

Suppose that a bus arrives at a bus stop following a homogeneous Poisson process of rate λ. Given time
T (> 0), let W be the waiting time difference between the first and last passengers who arrived at the station.
Compute E(W ).

7.1 Answer

Assume total N ≥ 1 passengers have arrived. If one writes the waiting times of the passengers by W1, · · · ,WN ,

then Wr is marginally beta-distributed for each r = 1, · · · , N :

1

T
Wr|NT = N ∼ Beta(r,N − r + 1).

That is, E(Wr|NT = N) = r
N+1T . By the linearity of expectation, one has

E(WN −W1|NT = N) =
N − 1

N + 1
T.

Now observe that

W =

{
WN −W1, N ≥ 1

0, N = 0

and apply the law of iterated expectations:

E(W ) = E[E(W |NT = N)] = E
[
N − 1

N + 1
T I(N ≥ 1)

]

=
∞∑

n=1

n− 1

n+ 1
T
e−λT (λT )n

n!

=

( ∞∑

n=1

(λT )n

n!
− 2

∞∑

n=1

(λT )n

(n+ 1)!

)
Te−λT

=

( ∞∑

n=1

(λT )n

n!
− 2

λT

∞∑

m=2

(λT )m

m!

)
Te−λT

=

((
eλT − 1

)
− 2

λT

(
eλT − 1− λT

))
Te−λT

= (T − 2

λ
) + (T +

2

λ
)e−λT .

• Please report any errors you find.

6
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1 Multivariate(MVT) Normal Distribution

Bold characters XYZ denote vectors or matrices. Usual characters XY Z denote scalars.

1.1 Characteristic Properties of MVT Normal Distribution

Definition 1 (MVT normal distribution: non-degenerate case). Let µ ∈ Rp and Σ > 0. (Σ is a p × p real
positive definite matrix.) A p-dimensional random vector X is defined to be (non-degenerate) normally-distributed if
it admits a pdf

fX(x) = (det(2πΣ))
−1/2

exp

{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
.

One writes X ∼ Np(µ,Σ).

Proposition 1 (Translation and shaping). Σ−1/2(X− µ) ∼ Np(0, Ip) where

Σ = Σ1/2(Σ1/2)⊤

is the Cholesky Decomposition of Σ.

Proposition 2 (Characteristic property I of the multivariate normal distribution). Suppose X ∼ Np(µ,Σ).
Define Y = t⊤X provided that t ∈ Rp is a p-dimensional vector. Then, Y ∼ N1(t

⊤µ, t⊤Σt).

• This can be proved via the moment generating function of X. Note E(et⊤X) = exp(t⊤µ+ 1
2t

⊤Σt).
Then, what is the mgf of t⊤X, namely, E(est⊤X) for real s ∈ R? What does it imply?

• In fact, this characteristic property defines the multivariate normal distribution.

Definition 2 (MVT normal distribution: general case). Let µ ∈ Rp and Σ ≥ 0. (Σ is a p × p real positive
semi-definite matrix.) A p-dimensional random vector X is defined to be normally-distributed if

t⊤X ∼ N1(t
⊤µ, t⊤Σt)

for ALL t ∈ Rp. If Σ > 0 in addition, then the Definitions 1 and 2 coincide. If Σ ̸> 0 on the contrary, then Σ is
NOT invertible and X does NOT admit its pdf. Nevertheless, X is normally-distributed (degenerate case).

Proposition 3 (Independence of multivariate normal distribution). Suppose (X,Y) ∼ multivariate normal
distribution. X ⊥⊥ Y if and only if Cov(X,Y) = 0.

• (Question: replication) Suppose X ∼ N(0, 1). Is Y = (X,X,X) normally-distributed?

• (Question: marginality) Let {e1, · · · , ep} be the standard (orthonormal) basis of Rp. Suppose X is
a p-dimensional random vector such that e⊤k X is normally-distributed for all k = 1, · · · , p. Is X

necessarily normally-distributed?

• (Question: independence) Suppose X ∼ N(0, 1) and Y ∼ N(0, 1) with Cov(X,Y ) = 0. Are X and Y

necessarily independent?

Proposition 4 (Characteristic property II of the multivariate normal distribution). Suppose X ∼ Np(µ,Σ).
Define Y = AX+ b provided that A is a q × p real matrix and b ∈ Rq . Then, Y ∼ Nq(Aµ+ b,AΣA⊤).

1
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1.2 True and False Implications

• Multivariate Normal ⇐⇒ Jointly Normal =⇒ Marginally Normal ̸=⇒ Jointly Normal

• Jointly Normal + Zero Covariance =⇒ Independence =⇒ Zero Covariance

• Marginally Normal + Zero Covariance ̸=⇒ Independence

• Marginally Normal + Independence =⇒ Jointly Normal ̸=⇒ Independence

• Key counterexample: X ∼ N(0, 1) ⊥⊥ Z ∼ Ber(1/2) and let Y = (−1)ZX .
Then, Y ∼ N(0, 1) and Cov(X,Y ) = 0 but X ̸⊥⊥ Y and hence (X,Y ) ̸∼ MVT Normal.

1.3 Quadratic Forms in Normal Random Vectors

Theorem 1 (Quadratic form through a real symmetric idempotent matrix). Suppose X ∼ Np(0, σ
2Ip) and A

is a p× p real symmetric idempotent matrix of rank m ≤ p. Then,

Y =
1

σ2
X⊤AX ∼ χ2(m).

• Note that A can be interpreted as a projection map onto an m-dimensional subspace V of Rp and that

(degree of freedom) = m = trA = rankA = dim imA.

• Moreover, I−A is a projection map onto the orthogonoal complement V ⊥ of V .

p−m = tr(I−A) = rank(I−A) = dim im(I−A).

• (Example) For p = n, A = 1
n1n1

⊤
n represents a projection onto a (1-dimensional) line generated by

1n ∈ Rn. One the other hand, I−A = In − 1
n1n1

⊤
n represents a projection onto 1⊥

n , which is (n− 1)-
dimensional subspace of Rn. By some computation, one has

X
A7→ X1n,

(n− 1)S2

σ2
=

1

σ2

n∑

j=1

(Xj −X)2 =
1

σ2
∥(I−A)X∥2 =

1

σ2
X⊤(I−A)X ∼ χ2(n− 1).

Proposition 5. Let X ∼ Np(0, Ip), A be a p× p real symmetric matrix, and B be a k × p matrix. If BA = 0, then
BX and X⊤AX are independent.

• Now, explain why X ⊥⊥ S2.

2
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2 Exercises

2.1 김우철 (2016)

Suppose

X =

[
X1

X2

]
∼ N2

([
µ

µ

]
,

[
σ2 ρσ2

ρσ2 σ2

])
.

Define Y1 = X1 −X2, Y2 = X1 +X2.
(a) (X1, Y1)의분포를구하여라.
(b) Y1과 Y2는독립임을보여라.

2.2 이재용 (2020)

Suppose Z ∼ Np(0, Ip). Let A be an arbitrary real symmetric idempotent p× p matrix. That is,

A2 = A = A⊤.

Prove that Z⊤AZ ∼ χ2(trA). Now suppose X1, · · · , Xn ∼ iid N(0, σ2). Prove that

(n− 1)S2

σ2
=

∑n
i=1(Xi −X)2

σ2
∼ χ2(n− 1).

2.3 김우철 (2015)

Consider the following linear regression model.

y = Xβ + e

e ∼ Nn(0, σ
2V)

where X is a real n × (p + 1) matrix of column full rank and V is a known n × n positive definite matrix.
Assume n > p+ 1. Justify that

β̂ = (X⊤V−1X)−1X⊤V−1y,

σ̂2 = (y −Xβ̂)⊤V−1(y −Xβ̂)/(n− p− 1).

Prove that

(β̂ − β)⊤X⊤V−1X(β̂ − β)

(p+ 1)σ̂2
∼ F(p+ 1, n− p− 1).

3



May 23 2023 수리통계 1튜터정준혁

2.3.1 Answer

• Justification of the estimators (Optional: Studied in Regression Analysis class)

Consider θ = (β, σ2). First we compute an MLE (Maximum Likelihood Estimator) θ̂ = (β̂, σ̂2) for θ. The
likelihood is given by

L(θ) = (det(2πσ2V))−1/2 exp

(
− 1

2σ2
(y −Xβ)⊤V−1(y −Xβ)

)
.

Take a negative logarithm:

− logL(θ) =
n

2
log(σ2) +

1

2σ2
(y −Xβ)⊤V−1(y −Xβ) + (constant). (1)

We are to minimize (1) with respect to β, σ2. The equation (1) shows that minimizer β̂ does not depend on
the choice of σ2. That is,

β̂ = argmin
β∈Rp+1

(y −Xβ)⊤V−1(y −Xβ) (2)

= (X⊤V−1X)−1X⊤V−1y. (3)

This can be justified in a number of ways. Firstly, one may take a derivative:

∂

∂β⊤ (y −Xβ)⊤V−1(y −Xβ) = −2X⊤V−1y + 2X⊤V−1Xβ.

Solving ∂
∂β⊤ = 0 gives β̂ = (X⊤V−1X)−1X⊤V−1y. Or if one writes ỹ = V−1/2y and X̃ = V−1/2X, then

β̂ = argmin
β∈Rp+1

(y −Xβ)⊤V−1(y −Xβ)

= argmin
β∈Rp+1

(ỹ − X̃β)⊤(ỹ − X̃β)

= (X̃⊤X̃)−1X̃⊤ỹ

= (X⊤V−1X)−1X⊤V−1y.

Now we are to minimize (1) with respect to σ2 given (3). Observe that

argmin
σ2>0

n

2
log(σ2) +

C

2σ2
=

C

n

and hence σ̂2 = (y−Xβ̂)⊤V−1(y−Xβ̂)/n. However, the MLE σ̂2 = (y−Xβ̂)⊤V−1(y−Xβ̂)/n is biased.
A simple correction suggests an unbiased estimator for σ2:

σ̂2 = (y −Xβ̂)⊤V−1(y −Xβ̂)/(n− p− 1). (So-called, MSE (Mean Squared Error))

Unbiasedness of the estimator will be verified soon.

4
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• Distributions of the estimator θ̂ (수리통계에서배울것이라고회귀분석교수님이기대하는바로그것!)

We start from the fact that

y ∼ Nn(Xβ, σ2V). (That is, the regression model is well-specified.)

Every linear map preserves normality of a random vector (Proposition 4). Therefore,

β̂ − β = (X⊤V−1X)−1X⊤V−1y − β ∼ Np+1

(
E(β̂ − β),Var(β̂ − β)

)

where

E(β̂ − β) = (X⊤V−1X)−1X⊤V−1(Xβ)− β = 0,

Var(β̂ − β) = (X⊤V−1X)−1X⊤V−1(σ2V)V−1X(X⊤V−1X)−1 = σ2(X⊤V−1X)−1.

Then the Proposition 1 ensures us that

1

σ
(X⊤V−1X)1/2(β̂ − β) ∼ Np+1(0, Ip+1),

1

σ2
(β̂ − β)⊤X⊤V−1X(β̂ − β) ∼ χ2(p+ 1).

On the other hand, observe that

V−1/2(y −Xβ̂) = AV−1/2y = AV−1/2(y −Xβ) (4)

(This step is not trivial at all. Please check it by yourself!)

where

A = I−V−1/2X(X⊤V−1X)−1X⊤V−1/2

is an n × n real symmetric idempotent matrix. Define Z = V−1/2(y − Xβ). If the regression model is
well-specified, then Z ∼ Nn(0, σ

2I) and V−1/2(y −Xβ̂) = AZ by (4). It concludes that

(n− p− 1)σ̂2

σ2
=

1

σ2
(y −Xβ̂)⊤V−1(y −Xβ̂)

=
1

σ2
(AZ)⊤(AZ)

=
1

σ2
Z⊤AZ ∼ χ2 (tr(A)) . (Theorem 1)

Commutativity of trace operator (i.e, tr(PQ) = tr(QP)) proves that tr(A) = n− p− 1. We are almost done.
It only remains to prove that β̂ ⊥⊥ σ̂2. Recall that β̂ = (X⊤V−1X)−1X⊤V−1y and that

(n− p− 1)σ̂2 =
∥∥∥AV−1/2y

∥∥∥
2

. (See (4))

By appealing to the Proposition 3, it suffices to show that (X⊤V−1X)−1X⊤V−1(σ2V)V−1/2A = 0. (why?)

5
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1 Lr-spaces and Modes of Convergence

We are given a fixed probability space (S,F ,P). Recall that a random variable X is a measurable function
X : S → R and that E(−) =

∫
S
(−)dP.

Definition 1. Fix 0 < r < ∞. Lr-space is said to be a space of random variables with finite r-th moments.

Lr(S,F ,P) = {X : E(|X|r) < ∞}

Definition 2. Fix r = ∞. L∞-space is said to be a space of random variables with finite essential supremums.

L∞(S,F ,P) = {X : inf{a ∈ R : P(X > a) = 0} < ∞}
= {X : {a ∈ R : P(X > a) = 0} ≠ ∅}

Proposition 1. By appealing to the Lyapunov Inequality previously described in the Chapter 1, one has

L1 ⫌ L2 ⫌ · · · ⫌ Lr ⫌ · · · ⫌ L∞ ⫌
{
X : {ϵ > 0 : E(etX) < ∞, |t| < ϵ} ≠ ∅

}

Fact 1. Fix 1 ≤ r ≤ ∞. Lr-space is a complete normed vector space, i.e, Banach space.

∥X∥Lr = E(|X|r)1/r.

Fact 2. Fix r = 2. L2-space is a complete inner product vector space, i.e, Hilbert space.

⟨X,Y ⟩L2 = E(XY ), ∥X∥L2 =
√
⟨X,X⟩L2 .

Actually, we identify X = X ′ if P(X = X ′) = 1. Now fix r and consider a sequence (Xn)
∞
n=1 of random

variables in Lr-space. There are at least five modes of convergence in Lr-space. Of course, we only handle
two of them in this course.

Definition 3 (Modes of Convergence).

Xn(s) → X(s)∀s ∈ S (pointwise convergence)
P ({s ∈ S : Xn(s) → X(s)}) = 1 (almost sure convergence)

E(|Xn −X|r) → 0 (convergence in norm)
P ({s ∈ S : |Xn(s)−X(s)| > ϵ}) → 0∀ϵ > 0 (convergence in probability)

P(Xn < x) → P(X < x)∀x ∈ R (convergence in distribution)

You only need to understand the last two concepts.

• Prove that Xn
p→ X if and only if

∀ϵ > 0,∃N,n > N =⇒ P(|Xn −X| > ϵ) < ϵ

The central topics in this course include the followings:

• WLLN

• CLT

• ∆-Method

1
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2 Exercises: CLT and the ∆-method

2.1 이재용 (2016)

Suppose X1, · · · , Xn ∼ iid Beta(α, 1) with α > 0 and define Yn = minXi. Find r > 0 such that nrYn admits
a limiting distribution. Find the limiting distribution.

2.2 이재용 (2016)

Suppose X1, · · · , Xn ∼ iid N(0, σ2) and σ2 > 0. Prove that

∑n
m=1 Xm

(
∑n

m=1 X
2
m)

1/2

d→ N(0, 1).

Find the distribution of

Y =
1

1 +
∑k

m=1 X
2
m/
∑n

m=k+1 X
2
m

.

2.3 이재용 (2016)

Suppose that

(X1, Y1), · · · , (Xn, Yn) ∼ N

([
µ1

µ2

]
,

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

])
.

We have shown that
√
n(ρ̂n − ρ)

d→ N(0, (1 − ρ2)2) as n → ∞ in the textbook. Now, find a function
g : (−1, 1) → R such that

√
n(g(ρ̂n)− g(ρ))

d→ N(0, 1).

2.4 김우철 (2017)

Suppose X1, X2, · · · ∼ iid Ber(p). Define the r-th waiting time by Wr = min{n :
∑n

i=1 Xi ≥ r}. Define

p̂r =
r

Wr
.

Find the limiting distribution of
√
r(p̂r − p) as r → ∞. Find a variance stabilizing transformation g such

that

√
r(g(p̂r)− g(p))

d→ N(0, 1).

2
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2.5 김우철 (2015)

Suppose U(1) < U(2) < · · · < U(n) are order statistics based on random samples from Unif(0, 1). Define

Rn =
U(1)

U(n)
.

Find r > 0 such that nrRn admits a limiting distribution. Find the limiting distribution.

3
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1 Limiting Distribution = Asymptotic Distribution

아래의기출문제들을풀어보면다음두가지질문에답할수있을것이라기대합니다:

• 수리통계 1의 5단원을우리가왜배우는가?

– 1.1문제하나만풀어봐도 5단원의소중함을느낄수있음. 이는수리통계 2에가서더욱두드러짐.

• 수리통계 1기말고사는왜전범위여야하는가?(!)

– 문제를풀다보면여러가지확률변수 (3장),변수변환,균등분포및지수분포의순서통계량 (4장)개념의
사용은 불가피함. 예를 들어, ”카이제곱분포는 중간고사 범위잖아요” makes no sense. 결국 5장은
1-4장을기본으로깔고가는수리통계 1의 climax이자,수리통계 2의시작점임.

1.1 이재용 (2016++)

Suppose X1, · · · , Xn ∼ iid Beta(α, 1) with α > 0 and define Yn = minXi. (n > 2)
(a) Find r > 0 such that nrYn admits a limiting distribution. Find the limiting distribution.
(b) Prove that

α̂n =
n− 1

−∑n
i=1 logXi

is an unbiased and consistent estimator of α.
(c) Show that

√
n(log α̂n − logα)

d→ N(0, 1)

as n → ∞.

1.1.1 ANSWER

(a) Recall that X ∼ Beta(α, 1) has a cdf given by

FX(x) =





1, x ≥ 1

xα, 0 ≤ x < 1

0, x < 0

Now for y ∈ (0, 1), one has

P(Yn > y) =

n∏

i=1

P(Xi > y) = (1− yα)n,

which implies that

P(nrYn ≤ t) = 1−
(
1−

(
t

nr

)α)n

1
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holds for t ∈ (0, nr). If r > 1/α, then for each fixed positive real t > 0,

lim
n→∞

P(nrYn ≤ t) = lim
n→∞

1−
(
1− tα

nrα

)nrαn1−rα

= lim
n→∞

1− e−tαn1−rα

= 0,

which concludes that nrYn does not admit its limiting distribution, i.e, diverges. (0 cannot be a cdf!) Note
that the preceding argument makes sense solely because for every fixed positive real t > 0, it is guaranteed
that t ∈ (0, nr) is true for sufficiently large n. On the other hand, if r = 1/α, then for each fixed positive real
t > 0,

lim
n→∞

P(nrYn ≤ t) = lim
n→∞

1−
(
1− tα

n

)n

= 1− e−tα ,

which concludes that nrYn
d→ A where A is defined to has a cdf given by

FA(t) =

{
1− e−tα , t ≥ 0

0, t < 0

As a remark, the distribution of A is called the Weibull distribution after Swedish mathematician Waloddi
Weibull, who described it in detail in 1951. One may write A ∼ Weibull(α, 1). (No need to memorize)
Finally, if 0 < r < 1/α, then it is a direct consequence of Slutsky’s Theorem that

nrYn = nr− 1
αn

1
αYn

d→ 0 ·A = 0.

(You may avoid applying the Slutsky’s Theorem here. You may equivalently give a reason that limn→∞ P(nrYn ≤
t) = 1 for all t > 0.) In sum, one concludes that nrYn converges in distribution if and only if 0 < r ≤ 1/α

and that

nrYn
d→





diverges, r > 1/α,

A ∼ Weibull(α, 1), r = 1/α,

0, 0 < r < 1/α

It suffices for tutees to define A by providing its cdf.
(b) Recall the notion of probability integral transform. One has FX(X)

d
= U ∼ Unif(0, 1). This ensures us

that (Xi)
α d
= Ui for each i = 1, · · · , n where U1, · · · , Un denote n iid random standard uniform samples. The

notion also suggests that − logUi
d
= Zi where Z1, · · · , Zn are n iid random standard exponential samples.

As a consequence, one may write

α̂n

α
=

n− 1

−∑n
i=1 logX

α
i

d
=

n− 1

−∑n
i=1 logUi

d
=

n− 1∑n
i=1 Zi

d
=

n− 1

V

2
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where V ∼ Gamma(n, 1). Now it remains to show that

E
(
n− 1

V

)
= 1 and

n− 1

V

p→ 1.

To begin with, V admits its pdf fV defined by

fV (v) =
1

Γ(n)
vn−1e−vI(0,∞)(v).

In order to find the distribution of W = 1/V , consider a differentiable map (0,∞) → (0,∞) : v 7→ w = 1/v.
Change of variables method gives us that

fW (w) =
1

Γ(n)
w−(n−1)e−1/w

∣∣∣∣
dv

dw

∣∣∣∣ =
1

Γ(n)
w−(n+1)e−1/wI(0,∞)(w).

As a remark, the distribution of W is called the Inverse Gamma distribution, which is very intuitive. One
may write W ∼ invGamma(n, 1). (No need to memorize. Will be described in detail in the Bayesian course.)
Hence, it is natural that

∫ ∞

0

1

Γ(n)
w−(n+1)e−1/wdw =

∫ ∞

0

1

Γ(n− 1)
w−ne−1/wdw =

∫ ∞

0

1

Γ(n− 2)
w−(n−1)e−1/wdw = 1.

The three integrands represent the pdfs of invGamma(n, 1), invGamma(n− 1, 1), invGamma(n− 2, 1), resp.
It is a direct result of the equalities that

E(W ) =
Γ(n− 1)

Γ(n)
=

1

n− 1
,

E(W 2) =
Γ(n− 2)

Γ(n)
=

1

(n− 1)(n− 2)
,

Var(W ) =
1

(n− 1)2(n− 2)
.

We have shown that E((n− 1)W ) = 1 and that Var((n− 1)W ) → 0 as n → ∞. These end the proof.
(c) We have observed above that α̂n/α

d
= (n− 1)/V where V =

∑n
i=1 Zi and Zi ∼ iid Exp(1). By appealing

to the Central Limit Theorem, one has

√
n

(
1

n

n∑

i=1

Zi − E(Z1)

)
d→ N(0,Var(Z1)).

This may be rewritten as

√
n

(
(n− 1)α

nα̂n
− 1

)
d→ N(0, 1).

Apply the ∆-method for g = − log; one has (g′(1))2 = 1:

√
n

(
log

n

n− 1
+ log

α̂n

α
− 0

)
d→ N(0, 1).

3
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The proof is done by the fact that
√
n log n

n−1 → 0 as n → ∞. The fact is obtained by the Mean Value
Theorem (high school analysis):

log
n

n− 1
=

log n− log(n− 1)

n− (n− 1)
=

1

cn
<

1

n− 1

for some cn ∈ (n− 1, n).

1.2 이재용 (2016)

Suppose X1, · · · , Xn ∼ iid N(0, σ2) and σ2 > 0. Prove that

∑n
m=1 Xm

(
∑n

m=1 X
2
m)

1/2

d→ N(0, 1).

Find the distribution of

Y =
1

1 +
∑k

m=1 X
2
m/
∑n

m=k+1 X
2
m

.

1.2.1 ANSWER

Apply the CLT:

√
n

(
1

nσ

n∑

m=1

Xm − 0

)
d→ N(0, 1).

Apply the WLLN:

1

nσ2

n∑

m=1

X2
m

p→ 1.

On the both sides, take (−)−1/2, which is continuous at 1:

√
nσ

(
n∑

m=1

X2
m

)−1/2

p→ 1.

Hence by the Slutsky’s Theorem, one has

∑n
m=1 Xm

(
∑n

m=1 X
2
m)

1/2
=

√
nσ

(
n∑

m=1

X2
m

)−1/2

· √n
1

nσ

n∑

m=1

Xm
d→ N(0, 1).

4
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On the other hand, let

V1 =
n∑

m=k+1

X2
m ∼ χ2(n− k)

d
= Gamma

(
n− k

2
, 2

)
,

V2 =
k∑

m=1

X2
m ∼ χ2(k)

d
= Gamma

(
k

2
, 2

)
.

As a result, one has

Y =
V1

V1 + V2
∼ Beta

(
n− k

2
,
k

2

)
.

1.3 이재용 (2016)

Suppose that

(X1, Y1), · · · , (Xn, Yn) ∼ N

([
µ1

µ2

]
,

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

])
.

We have shown that
√
n(ρ̂n − ρ)

d→ N(0, (1 − ρ2)2) as n → ∞ in the textbook. Now, find a function
g : (−1, 1) → R such that

√
n(g(ρ̂n)− g(ρ))

d→ N(0, 1).

1.3.1 ANSWER

By appealing to the ∆-method, it suffices to find g such that

(g′(ρ))2 =
1

(1− ρ2)2
.

One possible answer is as follows:

g(ρ) =
1

2

∫
1

1− ρ
+

1

1 + ρ
dρ =

1

2
log

1 + ρ

1− ρ
.

g is called a variance stabilizing transformation. As a remark, if g is a variance stabilizing transformation,
then so is

h = ±g + C,

where C is an arbitrary constant. Conventionally, however, we choose g that is increasing.

5
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1.4 김우철 (2017)

Suppose X1, X2, · · · ∼ iid Ber(p). Define the r-th waiting time by Wr = min{n :
∑n

i=1 Xi ≥ r}. Define

p̂r =
r

Wr
.

Find the limiting distribution of
√
r(p̂r − p) as r → ∞. Find a variance stabilizing transformation g such

that

√
r(g(p̂r)− g(p))

d→ N(0, 1).

1.4.1 ANSWER

Define Vi = Wi − Wi−1 for each i = 1, · · · , r with W0 = 0. Then V1, · · · , Vr ∼ iid Geo(p) satisfy Wr =

V1 + · · ·+ Vr. By the CLT, one has

√
r

(
Wr

r
− E(V1)

)
d→ N(0,Var(V1))

and hence

√
r

(
1

p̂r
− 1

p

)
d→ N

(
0,

1− p

p2

)
.

Apply the ∆-method to obtain

√
r(p̂r − p)

d→ N
(
0, p2(1− p)

)
.

Now it suffices to find g such that (g′(p))2 = 1/(p2(1− p)). One possible answer is as follows:

g(p) =

∫
dp

p
√
1− p

=

∫ −2udu

(1− u2)u
= −

∫
1

1− u
+

1

1 + u
du = log

1− u

1 + u
= log

1−√
1− p

1 +
√
1− p

.

(Substitute u for
√
1− p.)

1.5 김우철 (2015++)

Suppose U(1) < U(2) < · · · < U(n) are order statistics based on random samples from Unif(0, 1). Define

Rn =
U(1)

U(n)
.

(a) Find s > 0 such that nsRn admits a limiting distribution. Find the limiting distribution.
(b) Prove that U(n)

p→ 1 as n → ∞. Find the limiting distribution of n(1− U(n)).
(c) Find the pdf of

Y =
(U(r+1))

r

U(1) · · ·U(r)

6
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for each 1 < r < n.

1.5.1 ANSWER

(a) Recall that for r = 1, · · · , n, one has

− logU(n−r+1)
d
= Z(r)

d
=

V1

n
+

V2

n− 1
+ · · ·+ Vr

n− r + 1

where Z1, · · · , Zn ∼ iid Exp(1), V1, · · · , Vn ∼ iid Exp(1), and Z(1) < · · · < Z(n) are order statistics. Now

− logRn = − logU(1) + logU(n)
d
=

V2

n− 1
+ · · ·+ Vn

1

shows us that Rn ⊥⊥ U(n) and that Rn
d
= Ũ(1) where Ũ(1) < · · · < Ũ(n−1) are order statistics based on (n− 1)

random uniform samples. That is, Rn ∼ Beta(1, n− 1). Hence, for t ∈ (0, ns), one has

P(nsRn ≤ t) =

∫ t/ns

0

(n− 1)(1− x)n−2 dx = 1− (1− t

ns
)n−1.

By a similar argument to Exercise 1.1, one concludes that

nsRn
d→





diverges, s > 1

Exp(1), s = 1

0, 0 < s < 1

(b) Recall that U(n) ∼ Beta(n, 1). Fix an arbitrarily small positive real ϵ > 0. One has

P
(
|U(n) − 1| > ϵ

)
= P

(
U(n) < 1− ϵ

)
= (1− ϵ)n → 0

as n → ∞. This concludes that U(n)
p→ 1 by definition. Furthermore, verify that

P
(
n(1− U(n)) ≤ t

)
= P

(
U(n) ≥ 1− t

n

)
= 1−

(
1− t

n

)n

→ 1− e−t

holds for t > 0. That is, n(1− U(n))
d→ Exp(1).

(c) Recall that

− logU(1)
d
=

V1

n
+

V2

n− 1
+ · · ·+ Vn

1
,

...

− logU(r)
d
=

V1

n
+

V2

n− 1
+ · · ·+ Vn−r+1

r
,

− logU(r+1)
d
=

V1

n
+

V2

n− 1
+ · · ·+ Vn−r

r + 1
.

7
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Therefore, for i = 1, · · · , r, it follows out that

− logU(i) + logU(r+1)
d
=

Vn−r+1

r
+ · · ·+ Vn−i+1

i
,

and that

− logU(i) + logU(r+1)
d
= Z̃(r−i+1),

where Z̃(1) < · · · < Z̃(r) are order statistics based on r random standard exponential samples. Finally,

log Y =

r∑

i=1

(
− logU(i) + logU(r+1)

) d
=

r∑

i=1

Z̃(r−i+1) =

r∑

i=1

Z̃i
d
= X ∼ Gamma(r, 1).

It only remains to compute the pdf of Y = eX where X ∼ Gamma(r, 1). Consider the exponential map
exp : (0,∞) → (1,∞) and apply the Change of variables to it.

fY (y) = fX(log y)

∣∣∣∣
dx

dy

∣∣∣∣ =
1

Γ(r)
(log y)r−1e− log y 1

y
=

1

Γ(r)
y−2(log y)r−1I(1,∞)(y).

1.6 Unknown

Suppose X1, · · · , Xn ∼ iid Poi(µ) with µ > 0. Find a variance stabilizing transformation g such that

√
n
(
g(Xn)− g(µ)

) d→ N(0, 1).

1.6.1 ANSWER

Thanks to the CLT, one has

√
n
(
Xn − µ

) d→ N(0, µ).

It suffices to find g such that (g′(µ))2 = 1/µ. One possible answer is g(µ) = 2
√
µ.

1.7 Unknown

Suppose that Y ∼ Nn(Xβ, σ2I) where β : p × 1, σ2 > 0. Assume that X is a known n × p matrix and that
X⊤X is non-singular.
(a) Find the distribution of

β̂ = (X⊤X)−1X⊤Y.

(b) Let Π = X(X⊤X)−1X⊤ and SSE = Y⊤(I−Π)Y. Show that

SSE/σ2 ∼ χ2(n− p).

8
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(c) Are β̂ and SSE are independent? Answer with reasoning.
(d) Let σ̂2 = SSE/(n− p). Find the distribution of

F =
1

p
(β̂ − β)⊤X⊤X(β̂ − β)/σ̂2.

1.7.1 ANSWER

Duplicate to Exercise 2.3, Week 9.
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