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1 Supplementary Material: Probability Space (&& 37D

Definition 1. Given a set S, the power set (HZAE) P(S) is the set of all subsets of S.
For example, P(0) = {0}.

Definition 2. Given a nonempty set S, an algebra (t4) F C P(S) is said to be a o-algebra on S if it is closed
under countable union (7} FAR?), that is,

e ) eF,
e S\ A€ F whenever A € F, and
* Uj2, Aj € F whenever A € F for j € N.

Note that every o-algebra is closed under countable intersection (7} 2 g). The following are some
examples.

e {0, S} is the trivial o-algebra on S if S is nonempty.

e P(S) is the discrete (¢]4}) o-algebra on S.

e {0,{1,2},{3},{1,2,3}} is a o-algebra on {1, 2, 3}.

e If Sis uncountable, {A € P(S): Aor S\ Ais countable} is a o-algebra on S.

Definition 3. Given a sample space (22 -§7V) S and a o-algebra F on S, a member of F is called an event
(AH3).

Definition 4. Given a o-algebra F, a nonnegative-real-valued function p : F — [0,00) is said to be a finite
measure (3 F&) on F if

* w® =0,
L (U;O:1 Aj) = >0 w(A;) whenever {A;}52, C F is a disjoint (K| R 4) sequence of members in F.
The second porperty is called the countable additivity of measure (7HI71HA).

Definition 5. Given a sample space S and a o-algebra F on S, a finite measure P : F — [0,00) on F is called a
probability measure (-8 ZX) on F if P(S) = 1. The triple (S, F,P) is called a probability space (&5 -3-7b).

Note that 0 <P(A) < 1forall A € F.

Definition 6. Given a probability space (S, F,PP), a function X : S — R is said to be a random variable (Z&
W) if it is F-measurable, that is,

e {s€S:X(s)<z}eFforallz eR.

Given X, one defines a function Fx : R — [0,1] by Fx(z) =P ({s € S : X(s) < z}). It is called the cumulative
distribution function (cdf; 72 B3 @) of X. As a remark, P (X < x) is a shorthand form of the right hand
side.

¢ The cdf Fx of X is (1) non-decreasing, (2) right-continuous, and (3) satisfies Fix (—o0) = 0, F'x (0c0) = 1.
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2 Exercises a.k.a. £H

e THERE IS NO ROYAL ROAD TO MATHEMATICAL STATISTICS.

2.1 BASIC QUESTION A
Let {4; };’il be a sequence of events. Prove that P (liminf,, o A,) < liminf, ., P(A4,) where
inf A= U (14
n=1j=n

is an analogous definition of

liminf a, = lim inf {a; : j > n}
n—00 n—oo

in FAAZ 1.

2.1.1 Answer

Define B, = (]2, A; for each n € N. One may show that {B,};2, is an increasing sequence of events.
Now we are to show the inequality:

(o]

P <U Bn> < lim inf {P(A;):j >n}.
n— oo

n=1

By appealing to the continuity of probability measure in the textbook, P (|72, B,,) = lim,, . P(B,,) holds.

n=1"Ln

Hence, it is enough to show that
P(B,) <inf {P(A;) : j > n},

which is obvious from the monotonicity of probability measure in the textbook since B,, C A; forall j > n.
* ADDITIONAL NOTES

It is an easy exercise to show that
P(liminf 4,) < liminf P(4,,) <limsupP(A,) <P (limsup 4,,) .

This inequalities are called the continuity inequalities of measure by some authors. In case liminf A4,, =
limsup A,,, one writes lim A,, = liminf A,, = limsup A,,. (Otherwise, lim A,, is not defined.)
If lim A,, is well-defined, then

P(lim A,) = P(liminf A,) = liminf P(4,,) = limsupP(4,,) = P (limsup 4,,)
=limP(A4,).

Note that lim A,, is well-defined when {A,,}22 y is either increasing or decreasing for some N. However,
the converse is false. Consider for S =N, Ay, = {1,--- ,n}, Asp—1 ={1,--- ,2n — 1}. Thenlim A,, = N.
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2.2 BASIC QUESTION B

Ler F be the cdf of a random variable X. Prove that P(X = z) = F'(z) — F(x—) where

Fla=) = lim F(y) = lim F(z = h)

2.2.1 Answer

Define A4, = {s € S : X(s) € (—oo,x — 1]} for each n € N. Then {A,}52, is an increasing sequence of
events. Hence by the continuity of probability measure,

. . 1
P(X <x) (UA ) znlbrrgoP(An)—nlgnéoF(x—n> = F(z—).
By the additivity of probability measure, we have P(X = z) = P(X < z) — P(X < z).

23 A$4d (2011

Suppose Ay, - - -, A, are events in the sample space S. Prove that
IP’(U/L;) <STP(A) - Y PANA) + D P(A; N A; N A).
i=1 i=1 i<j i<j<k
2.3.1 Answer

We further claim stronger proposition given by

P(OAJS11M&> M)
(4i) — Z P(4i N 4;) @
(A) = Y PANA)+ > P(ANA;NA). ©)

n
P4 )< - NA;
i=1 = i<j<n i<j<k<n

Proof by induction. It is easy to check the cases n = 1, 2. Firstly, we give a proof of the inequality (3) with
respect to Ay, -+, Ap41. Observe that

)
{i0) () )

gnip( = > PANA)+ Y P(ANANAL) - (O(AZ—DA”H))
i=1 i

i<j<n 1<j<k<n
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This inequality holds by the induction hypothesis (3) applied to A;,--- , A,. Applying the induction hy-
pothesis (2) to the last term regarding Ay N A,q1,- -+, An N Ayq1 ends the proof. We omit proofs of (1), (2)
for n + 1 sets because they are much easier.

2.4 Unknown (2009) and o] A& (2016)

Suppose A, - - - , A, are events in the sample space S. Prove that
P (U Ai) =3 P(A) = > PANA)+ Y PANANAL) =+ (-1)"'P (ﬂ A,)
i=1 i=1 i<j i<j<k i=1
2.4.1 Answer
Omitted.

2.5 Unknown (2009)

Events Ay, -+, A, in the sample space S is said to be "pairwise” independent, if
]P(AZ N AJ) = P(AZ)P(AJ),Z <J
Prove by a counter-example that the pairwise independence does not imply the independence of A4, - - - , A,,.

2.5.1 Answer

Given the sample space S = {0, 1, 2, 3} and the collection of events F = P(S), define the uniform probabil-
ity as

A A
=14,

To put it more intuitive and simple, just roll a fair regular-tetrahedral die. AAFAA] FA9)S s 2

Fix n = 3 and define A; = {0, ¢} for i = 1, 2, 3. Confirm that the events A;, A,, A3 are pairwise independet
but not “mutually” independent.

2.6 °]A-8- (2020)
Let (X,Y, Z) be jointly distributed with the pdf

1 —sinzsinysin z
83

flz,y,2) = 10 < z,y, 2 < 2m).

Prove that X, Y, Z are pairwise independent, but not independent as a 3-dimensional random vector.
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2.6.1 Answer

Integrating out z gives the joint pdf of (X,Y"):

27 . . .
1 —sinxsinysin z
fi2(z,y) = /0 33 Y dz1(0 < z,y < 2m)

1

1 1

=—J0<x<2n)—1(0<y <2
P10 <2 <2m)5 10 <y < 2n)

= fi(z)f2(y).

Hence X, Y are independent. However, it is obvious that f1 2 5(x, y, 2) # f1(2) f2(y) f3(2).

2.7 Unknown (2007*, 2009%) and 7J-¢-4 (2015%, 2017)

Suppose the cdf F of X is given by

0, z <0
(#24+1)/9, 0<z<1
(22 +4)/9, 1<z<?2

1, r>2

F(z) =

Fork =1,2,---,define Ay = [1/k,2 — 1/k] and By, = (1 — 1/k,2 + 1/k). Find the following:
limg o0 Ak7 limg o0 ]P)(X S Ak), limg_y o0 B, limg_ o0 ]P(X S Bk)
2.71 Answer

Note that Ay, is increasing and By, is decreasing so that limy_, o Ay and limy_,~, By, are well-defined. Verify
that

lim Ay = (0,2) lim P(X € Ay) = F(2-) = F(0) =8/9 - 1/9=17/9
:— 00 — 00

lim By, = [1,2] lim P(X € By) = F(2) — F(1-) = 1—2/9=7/9
k— o0 k—o0

2.8 7% (2018)

Suppose the cdf F of X is given by

0, z <0
z/10, 0<z<2
22/10, 2<x<3
1 T >4

F(z) =

Forn = 1,2,---, define B, = (2—1/n,3—1/n). Prove that liminf,_, . B, = limsup,,_,., B, and find
P (X € lim,_so0 By).
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2.8.1 Answer

Note that B,, is neither increasing nor decreasing. However,

liminf B, = | J () B; = | [2,3—:) =[2,3)

n=1j=n n=1

and

=
w0
=
T
™
3
Il
D
-
&
I
13
7N
[\
I
3|
w
N—
Il
™
&

n=1j=n
coincide. Therefore, lim B,, = [2,3) and hence

P(X € limB,) = F(3—) — F(2—) = 9/10 — 2/10 = 7/10.

2.9 olA-& (2016)

Let F be the cdf of X. Define F~!(u) = inf{z € R : F(z) > u} for 0 < u < 1. Prove the following;:
e F~1is well-defined. (Why does the infimum exist?)
o F(F~Y(u)) > uforue (0,1).
e F-Y(F(z)) <zforxeR.

e u< F(z) < F'(u) <zforue (0,1)and z € R.

Suppose F is continuous and strictly increasing. Then F(F~!(u)) = uand F~(F(z)) = .

2.9.1 Answer

Given u € (0,1), write A, = {x € R: F(z) > u}. Verify that A, is a nonempty subset of R bounded from
below. Hence F'~!(u) = inf A, is well-defined. For each n € N, there exists an element x,, € A, such that

1 1
T, <inf A, + == F~'(u) + —.
n n

Since F is non-decreasing, one has
-1 1
u< F(zp) <F(F " (uw)+— ).
n

Taking lim,,_,~ concludes that u < F(F~!(u)) since F is right-continuous. Now for each = € R, itis obvious
that

x € AF(z)v

implying that « > inf Ap(,) = F~'(F(z)). Now we are to show u < F(z) <= F~'(u) < . Since F is
non-decreasing, it only remains to elaborate that F'~! is non-decreasing (left to the tutees).
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Suppose now F is continuous and strictly increasing. It is easy to check that F'(R) = (0, 1). That is, for each
€ (0,1), there exists € R such that F'(z) = u. Conversely, for each z € R, set u = F(z) € (0,1). Observe
that A, = [z,00). As a result,

F~'(u) = inf A, = inf[z,00) = 2.

Explain why this ends the proof.

2.10 Unknown (2007, 2009, 2011)
Let X be a non-negative random variable of continuous type with pdf f and cdf F satisfying F'(z) = f(z)
for all z > 0. Suppose E(X) < oc. Prove that lim,_,oc 2(1 — F(z)) = 0and E(X) = [;(1 — F(x))dz.
2.10.1 Answer
Given a constant z > 0,
0<z(l-F(x)) = x/ f(z)dz < / z2f(z)dz = / z2f(z)dz — / z2f(z)dz.

0 0

This argument is valid since z f(z) is nonnegative for z > 0 and [~ zf(z)dz = E(X) < oo by assumption.
The right hand side converges to zero as x — oo. As a result, lim,_,., (1 — F(z)) = 0 by appealing to the
Sandwich Theorem. Indeed, Fubini’s Theorem applied to a nonnegative function ensures us that

IEJ(X):/Ooozf(z)dz:/Ooo/ozf(z)dxdz:/()Oc/:of(z)dzdx:/OOC(I—F(x))d:r.

2.11 Unknown (2007)

Suppose that X and Y have the joint pdf
fro(z,y) = 152%yl(0 <z <y < 1).

Compute P(Y < 1/2)and P(X +Y <1).
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2.11.1 Answer

/2 ry
P(Y§1/2):/ /15z2ydxdy
0 0
1/2
= [ sty = /20 =1/
0

1/2 pl—z
P(X+Y <1)= / / 152%y dydx
0 x

1/2 15
= / —2%(1 — 22) dx
O 2
Y15,
= / —2z*(1—z)dz (substitute z = 2x)
o 16
B 15
16 12 64

212 Unknown (2007)
The pdf of standard logistic distribution L(0, 1) is given by

—X

e
51(—00 <& < o0).

f(x)zm

Find F~!(u) for the cdf F of L(0,1).

2.12.1 Answer

Define o(z) = 1/(1+ e~ %) for x € R. Verify that 0 € C>°(R), that is, ¢ is k times continuously differentiable
foreach k € N.

Then F(x) = ffoo 0'(z)dz = o(z) and hence F~!(u) = log 1*-. How can you get a random sample from
the standard logistic distribution? Consider X = log % where U ~ the standard uniform distribution.

213 Unknown (2011)
Let (X,Y) be jointly distributed with the pdf
flx,y) =y e I(0 <2 <y < 00).

Find the marginal pdf f;(x), the conditional pdf f5); (y|z), and Var[Y'|X].
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2.13.1 Answer

filz) = / h y e Y dy (non-elementary; no closed form)
-1 —-y]
fzu(ym ¥ ° J(cf(;)y < )
B[Y|X o) = = ' fle(x) Y
J— eiz
)
E[Y2[X =] = W
(T +az)e™
fi(x)
Recall that
Var[Y|X = 2] = E[Y?|X = 2] — (E[Y|X = 2])*
and hence
) _(1+X)e—X_(e—X )2
Va0 =500 (A
where

fl(X):/ y~te Vdy.

b
214 Unknown (2009)
Let (X,Y) be jointly distributed with the pdf

Flay) = 2] < DI(y| < 1)

Prove that X and Y are NOT independent. Prove that X2 and Y? are independent.

2.14.1 Answer

Hint: Compute P(X? < t) given 0 < ¢ < 1. Details are left to the tutees.

2.15 Unknown (2009)

Let F be the cdf of a random variable. Prove that the set of discontinuity points of F',

D = {z € R: F is discontinuous at z}
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is countable.
2.15.1 Answer
There exists a function h : D — Q such that
h(z) is an arbitary element of (F(z—), F'(z)) N Q.

h is well-defined since F(z—) < F(z) for every z € D and Q is dense in R.
(Remark: This argument depends on the Axiom of Choice. Search it if you are interested.)
For x < y in D, we have

Fz—) < F(z) < F(y—) < F(y)
because y, :=y — % converges to y from below and there exists N € N such that
n>N=x <y, = F(z) < F(yn)-

As a result, h is injective, implying that D is countable.

3 Remark
Definition 7. A random variable X : S — R is said to be of discrete type (0]AVq && W) if the image
X(S)={X(s) eR:se S}

is discrete in the sense that every point in X (S) is isolated (LG H).

Recall that a point p is said to be an isolated point of a subset A in the metric space R if there exists an
open neighborhood of p that does not contain any other points of A.
Regardless of the geometry of the image X (.5), the cdf F'x of X is defined on the entire real line R.

Definition 8. A random variable X : S — R is said to be of continuous type (A4 && W) if the cdf Fx of
X is continuous.

Definition 9. A random variable X : S — R is said to be of mixed type (&% & W) if it is neither discrete
nor continuous, but is a mixture of both.

10
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4 Advanced Exercise
Suppose the cdf F' of a random variable X is given by

aarctan(z) +ma+b, >0
F(r) =
aarctan(z) + b, <0

for some constants a, b € R.
¢ Find a and b.
¢ (optional) Articulate that (X € Q) and (X < 1) are events.
e Compute P(X € Q) and P(X < 1).
* Verify that the random variable X is neither discrete nor continuous.
* Does a pdf f of X exist?

¢ Prove that there exist random variables X, and X, such that X is discrete, X, is continuous, and

F = \Fx, + (1 — \)Fx,

holds for some A € [0, 1].

¢ (optional) How would you generate a random sample X ~ F'in practice?

11
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1 Supplementary Material

1.1 Infinite Sum

Definition 1. Given an infinite set A and function f : A — [0, 00), the infinite sum ) _ , f(a) is defined by

> fa) =sup {Z f(b): BC AB isﬁnite} :

acA beB

Proposition 1. Suppose A is a countably infinite set. Then there exists a bijection (AAL F4)

r:N— A

Proposition 2. Given a countably infinite set A and function f : A — [0, 00),

Y fla)y=3 f(r(n)

a€A n=1

holds for every bijection r : N — A.
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1.2 Joint Cumulant Generating Function

Recall that the joint moment generating function (Ag&HEFAA ) of X, Y is defined as
Ml,z(h,tg) =K (et1X+t2Y)

if the expectation is finite in some open neighborhood of (t1,t2) = (0,0).

Proposition 3. If mgf M o(t1,t2) of (X,Y) exists, (ie., E(e"XT%2Y) < oo for (t1,ts) contained in an open
neighborhood of the origin) then the joint moments E(X'Y7) of all orders are well-defined. In addition,

M 5(ty, t2) ZZ tTtJ
1=0 j=0

holds in some open neighborhood of the origin. On the right hand side, we assume 0° = 1 by convention.
The first several terms are very useful.

My o(t,te) =1+ (BE(X)t, + E(Y)t2) + <IE(X2) 5 + E(XY)tyty + E(Y?) 3) +O(|It]1*)

The natural logarithm of joint mgf is called joint caumulant generating function (2 g+ 34 F4).
CLQ (tl, tg) = IOg Ml’Q(tl, tg) = 10g E (€t1X+t2Y)

The first several terms are attained from the series expansion: log(1 + z) = — “‘—22 +O(x3).
2
Cha(ti,ta) = (E(X)ty + E(Y)ts) + (Var(X2) 5+ Cov(X,Y)tits + Var(Y?) 2) +0(1tI?)

1.3 Gamma Integral

Definition 2. Gamma function T" : (0, 00) — R is defined by

o0
I‘(t):/ i le ™ dx
0

It is easily derived that
FT() =V
e T'(1) =
e T'(t+1) =1tI'(¢) for all t > 0. Henceforth, I'(n) = (n — 1)! for n € N. Note that 0! = 1.

It is helpful to memorize that

[T L [T omiea T (-0
0 a” a”

holds for alln € Nand a > 0.
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2 Exercises a.k.a. &H

e THERE IS NO ROYAL ROAD TO MATHEMATICAL STATISTICS.

2.1 Advanced Exercise

Suppose the cdf F' of a random variable X is given by

aarctan(z) + ma+b, x>0
Fx) =
aarctan(z) + b, <0

for some constants a, b € R.
¢ Find a and b.
¢ (optional) Articulate that (X € Q) and (X < 1) are events.
e Compute P(X € Q) and P(X < 1).
* Verify that the random variable X is neither discrete nor continuous.
* Does a pdf f of X exist?

¢ Prove that there exist random variables X, and X, such that X is discrete, X, is continuous, and

F = \Fx, + (1 —\)Fx,
holds for some X € [0, 1].

* (optional) How would you generate a random sample X ~ F'in practice?

2.1.1 Answer

Solving lim,_,o, F'(z) =1 and lim,_,_, F'(z) = 0 gives

)
)
B~

Recall that (X < z) is an event for every z € R. Indeedly,

xeo=Ux=0=UN ((ng)\(ng—l))

q€Q qeQn=1 "
> 1

X<1)= X<1l--—

en=Uees
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are events since Q is countable. By appealing to the countable additivity and continuity of P, we have

P(XGQ):Z]P(ﬁ ((XSQ)\(XSq—i)»

q€Q n=1
_angngop(<xgq>\<X§q—i>>
qeQ
1
=Y " lim (F(q)— F(g— =)
=) (F(g) — F(g—-))
qeQ
= F(0) — F(0-) = %
and
P(X <1) = lim P(X <1- %)
= Jim F1- )
7
=F(l-)=g¢

F is strictly increasing for an open interval (e.g., for 1 < x < 2) so F' is not discrete. However, F is
discontinuous at # = 0, implying that F' is not continuous as well. In addition, pdf f of X cannot be
defined since F' is discontinuous at = 0. Now consider the following two cdfs.

1, >0 1 1
F - ’ - F = — —
x, () {0’ =0 x, () - arctan(z) + 5

Verify that these are well-defined cdfs of discrete and continuous random variables, respectively. Further-
more, one has F' = A\F'x, + (1 — A\)Fx, with A = 1/2. Consider the following hierarchical random variable.

Y ~ Ber()\)
X|Y =1~ F,
XY =0~ Fx,

Then it’s an easy exercise to show that X exactly has F' as its cdf. As described in the class, one can also
prove that

c

FNU) = tan <7T(U - ;)) ~ Fx,

where U ~ Unif(0, 1) (i.e, the standard uniform distribution). Now we are able to generate n iid samples
from the distribution F' following the notion of mixed-type distribution. To put it more precise, given
n iid standard uniform samples Uy, --- ,U,, compute X; = tan (’R’(Ui — %)) and coerce it into zero with
probability 1/2 for each i.
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2.2 o]A& (2016)

Let X be a continuous random variable endowed with the pdf fx given by

Fx(@) 2¢, 0<z<1
€Tr) =
X 0, otherwise

Define Y by

INRVAN
ol

(a) Compute the cdf of Y.
(b) Compute the conditional pdf of Y given Y < %

2.2.1 Answer

(@) Fix0 < y < 1. Then

1 1 1 1
PY <y)=PO<X < )PV <yl0< X < ) +P(X > 5)P(Y <y|X > 7)
N— —
=0
1
=PO<X <5 Y<y)
=P0< X <y)=y>
and hence
0, y <0
Fy(y) =P(Y <y)=<y? 0<y<g3
1, y>1

(b) Note that Y < 1 if and only if 0 < X < 1. In particular, Y = X holds provided that Y < 1. Hence it
only remains to compute the conditional pdf of X given X < 1.

1
Frivas(y) =8yl0 <y < 3)

2.3 o4& (2016)

Consider a bivariate random variable (X,Y) with
E(X) = pu1, Var(X)=o0}, E(Y)=py, Var(Y)=o02 Corr(X,Y)=np.

Suppose all the qunatities are finite. Suppose E(Y|X) = a + bX for some reals a,b € R.
(a) Prove that E(Y[X) = 2 + p22(X — ).
(b) Prove that E(Var(Y|X)) = o3(1 — p?).
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2.3.1 Answer

By appealing to the law of iterated expectations, we have

o =E(Y) = E(E(Y|X)) = E(a + bX) = a + by
jupz + po102 = E(XY) = E(E(XY|X)) = E(XE(Y]X)) = E(X +bX?) = a1 + b(u} + 07)

Combining these two equations concludes that
a = s — by b=p—
By appealing to the law of total variance,
E (Var(Y|X)) = Var(Y) — Var (E(Y|X)) = 03 — b?05 = 02(1 — p?).
24 354 (2017)
Suppose a random variable X has its cgf (cumulant generating function). The r-th cumulant is given by

(2k — 1)1272k+1 r =2k
Cr =
0, r=2k-—1

fork=1,2,---.

(a) Find the r-th moment of X.

(b) Find the pdf of X.

(c) Find the kurtosis (9| %) of X.

24.1 Answer
Consider its cgf Cx (t).
& tQk
Cx(t) = Zczk@
k=1
- t
— 1o—2k+1
> 2k —1)12 @]
k=1
o0 2%k
S (2)
2k
k=1
— (t/2)" = (—t/2)"
= Z (t/2) + Z (=t/2) (All terms of odd indices cancel out.)
n=1 n n=1 n
t t
= —log(1 — 5) —log(1 + 5) (—log(l—z)=x+2?/2+23/3+-")
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whose radius of convergence is 2. Hence the mgf M x of X is attained as follows.

—1 0o k
Mx(f)zeXPCX(t>:(1_) :1+Z(tQ> (I-a) ' =1l+z+a®+2°+-)
k=1

That is, the r-th moment is given by

(2k)1272k =2k
m, =
0, r=2k-—1

fork =1,2,---. Now we are to find the pdf of X. Recall that — log(1—t/2) is exactly the cgf of Y ~ Exp(1/2)
endowed with the pdf

fr(y) = 2e71(y > 0).

In fact, —log(1 + t/2) is nothing but the cgf of —Z where Z ~ Exp(1/2). Hence, the Theorem 2.5.11(b) in
the textbook says that Cx (¢) is explicitly the cgf of Y — Z where Y, Z are iid(i.e, identical and independent).
By the uniqueness of cgf illustated in the Theorem 2.2.4(b), we are ensured to write that

4

X=Y-Z7

It is intriguing to show the following property of Exponential distributions, namely, the memoryless prop-
erty.

Y -2y >2) Ly
(Z-YY<2)Lz

Let F' denote the cdf of X. Given x > 0, we have

1
1—ﬂm=MX>@:Pw>zmw>z>ﬂY>m=§f%

=1/2 =P(Y>z)=e— 2=

Analogously, given 2 > 0,

1
Fe@:MXg—@zmygzww—Yzﬂygmzif%
Combining these two equations uniquely and entirely determines the values of F' for all x € R. Now Fis
continuous and one has

f(z) = %F(m) = e 2 (—00 <z < 00).
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The distribution F is called the Double Exponential (°]5%]4*) distribution, a.k.a. Laplace distribution
(with location parameter ($]X]24) 0 and scale parameter (=X 54) 1/2.) Please refer to https://
en.wikipedia.org/wiki/Laplace_distribution. Then see Exercises 1.15 and 1.16 in the textbook.
Finally, from the formula of the r-th cumumant, we have

ey =11271 =1/2, (= Var(X))
ey =31273 =3/4.

Then Exercises 1.19 and 1.20 say that the (excess) kurtosis of X equals to ¢, /c3.

kurt(X) = c—g =3.
€2

That is, the Laplace distribution is much sharper than the normal distribution. Now see Exercise 1.22. As a
final remark, kurtosis is translation/scaling invariant by definition. That is, for example,

¢ Every Normal distribution has 0 as its kurtosis.

¢ Every Laplace distribution has 3 as its kurtosis.

25 793 (2017)
Suppose X, Y are jointly distributed with the following pdf.
fra(z,y) =372 7YI(0 < x < y < o0)

(a) Find the conditional pdf f5; (y|z) given X = z for some z > 0.
(b) Find Var[E(Y'|X)] and E[Var(Y|X)].
(c) Find Var[X +Y — E(Y|X)].

2.5.1 Answer

A little calculus ensures us that

fi(z) = 3e73*1(0 < = < o0)

Jap(ylz) =" YI(z < y < o0)
One may identify these distributions to the known ones, respectively.

X ~ Exp(1/3)
(Y — X)|X ~ Exp(1)

Hence

E(Y|X)=E(Y — X|X) +E(X|X) =1+ X
Var(Y|X) = Var(Y - X|X) =1
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As a result, Var[E(Y|X)] = Var(X) = 1/9 and E [Var(Y|X)] = E(1) = 1. Furthermore, since E(Y|X) =
1+ X,

1 1
Var[X +Y —~ E(Y]X)] = Var(y — 1) = Var(Y) = 5 +1= 30
by appealing to the law of total variation.
2.6 °JA& (2020)
Suppose X L Y and
s lal<0 g, yl<o
Fx(z) = 1, x>0 Fy(y) = 1, y>0
0, < —0 0, y < —0

Compute E(X —Y).

2.6.1 Answer

Very easy. Left to the tutees. The independence condition is not necessary. Find E(X + ¢) and E(—Y + 6),
respectively. Then E(X —Y) =E(X +0) + E(-Y +6) — 26.

2.7 o|A§ (2020)

579 EEAL QI AAT 9T, F3)Y F2 AL B JEET s 55 £ F M o] AT R

T X
EEYLY, Mo| t2i BEREL

P(M—m):% =0,1,2,3,4,5
o3 sht FE7F Y F AR A2stel 299 RS ARSI, o] F 19 A, 2 192 BoA
£ ahglt. olu) 59 2] £EA 3 39 o]4fo] A FHo|A EEYS HES Anjelrp

2.71 Answer

A2yo B T AV SRS 5 X AL YERAL
e (Prior) M ~ Unif{0,1,2,3,4,5}
* (Model) X|M ~ HyperGeo(5, M, 2)

e (Posterior) M|X ~?
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©

-

2 A= M|X = 10]2}= posterior distributiono]] ol 2= Zo] "}t £ HyperGeo(5, M,2) =
21} Zro] F0] It} Indicator function®]] 50172 X 9] supportef 2|3t}

P@:ﬂM:m:<DC;:)
()

P(M =m|X =z) x P(M =m)P(X = z|M =m)
x P(X = z|M =m)

D))
(»)

ol ™t} 971 A= M 2] supporte] F2lgttt. 53] 2 = 191 F-¢oll=

L dlm

I{max(O,mf?z),--- ,min(2,m)} (.17)

Bayes’ Theoremo]| oJs}to] 2t = 0, 1,2 9] tjs}o]
Lo z41,042,0433 (M) (with respect to m)

( 3 )
—1
P(M =m|X = 1) o« ~ 211 934y (m)

@

o|B 7 glo| 10] &2 normalizes}o]

S Aot mEbd P(M > 3[X =1) =5/10 = 1/2.

2.8 7494 (2017)
Suppose the mgf of X exists. The k-th moment m;, of X is given by
a k —2
m= 0ty (0 F ()
=1 j,>1 ii>1 J1, »
Jit+a=k

forall k =1,2,---. Find the skewness, kurtosis, and pdf of X.

10
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2.8.1 Answer

Consider the mgf M (t) of X. For some ¢ > 0, the following holds for ¢t € (—¢,¢).

M(t) = 1+§:mkkk'
k=1
= 1+§:(—1)k§: DR Z(ﬁk m) <—12>217}:

which is identical to the mgf of Negbin(2,1/2). Now take logarithm to get the cgf.

C(t) =log M(t) = —2log (1 4+ 2(e~" — 1))

= —2log(1 — <2t—t2 + g — % —|—O(t5)>) (et —1=—t+t2/2-13/6+t1/24+---)
G
=280+®° + §®3+ %®4+0(t5> (—log(l —z) =a+a?/2+ a3+ 2" /4 + )

2 1 7 16
= (4t —2t? 4 §t3 - gt4 + O(t5)> + (4t2 — 413 + §t4 + O(t5)> + (3t3 — 8t + O(t5)) + (8t' + O(t"))
13
= 4t + 2t* + 2t° + Et‘* +O(t%)
442 12t3 52t

=dt+—+— +

or T T TO),

which implies that ¢; = 4,¢2 = 4,¢3 = 12,¢4 = 52. Double check here: https://www.wolframalpha
.com/input?i2d=true&i=series+-210g%5C%2840%291%2B2%5C%2840%29%9exp%5C%2840%29-x%5C%

11
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2841%29-1%5C%2841%29%5C%2841%29. Hence, by Exercises 1.19 and 1.20,

C3 3
skew(X) = =% = -,
Sl
Cy 13
kurt(X) = - = —.
urt(X) 2 1

From the definition of Negative-binomial distribution, the pdf f of X is given by

f(a) = (; B i) (;)2 (1 _ ;)I_QI{Q,B,&._.}(J;)

= (I — 1)27II{27374,... }(ZC)

o NOTE: A7} A|@4] 919rhel, A7+

oZ

12

pdf= 5 okl skewness, kurtosis7HA] = ¢
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1 Lebesgue-Stieltjes Integral and Law of the Unconscious Statistician

1.1 Motivation

Recall that a random variable of mixed type does not assume its pdf. Then how do we define its expectation?
For instance, consider the following cdf.

1—3e™3, 1>2
Fx(z)={3-3¢7%, 0<a<2
0, <0

Note that F'x is NOT differentiable since it is not even continuous at x = 2. In fact, the cdf F'x of mixed
type random variable X is a 50-50 mixture of the following two distributions.

Fx,(x) = Ij2,00)(2) (X4 ~ The Dirac Delta distribution concentrated at = = 2)
Fx (x)=(1- e’sm)I[om) (x) (X, ~ The Standard Exponential distribution of mean 1/3)

Henceforth, it is very natural to define the expectation by E(X) = 1E(X,) + 1E(X.) = L. Again, how do
we define its expectation without assuming the existence of pdf?

1.2 Simple Random Variables

One of the simplest random variable is an indicator random variable. Given a probability space (S, F,P)
and an event £ € F, an indicator random variable Iz is a function S — R defined by

1, s€E
IE(S)Z{O ng ses

We say an event E occurred if I5(s) = 1 and did not occur otherwise. Now we are going to handle a finite
linear combination of these indicator random variables.

Definition 1 (Simple Random Variable). Given a probability space (S, F,P), a nonnegative random variable
X : S — Ris said to be simple if X =37"_, a;1g, for somen € N, a; > 0, and events E; € F. That is,

X(s)=> a;lg,(s), sc S
j=1

For example, if |S| < oo and F = P(5), then every random variable X is simple.

Definition 2 (Lebesgue-Stieltjes Integral of a Simple Random Variable). For a simple random variable X =
> i1 aj1E,, we define the expectation of X with respect to IP by

Ep(X) =Y a,;P(E)).
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Mathematicians usually denote the left hand side by [ XdP. It is called the Lebesgue-Stieltjes integral of X with
respect to IP.

For example, if E € F is an event, then Ep(Ig) = P(E). There are possibly many representations for a
simple random variable, however the Lebesgue-Stieltjes integral is well-defined by the axioms of P. That
is, for Eq, -+ , By, Fy, - [ Fy, € F,

m

If iajIEj = ZbiIFﬂ then iajP(Ej) = Zm:biP(Fi)'
2 = i=1

i=1

1.3 Nonnegative Random Variables

Proposition 1. Every nonnegative random variable X can be represented by a pointwise limit of a monotone
increasing sequence of simple random variables. That is, there exists a sequence { X, }$2, such that

lim X;(s) = X(s) Vse S (pointwise convergence)
1—> 00

X1(s) < Xo(s) < - Vse S (monotone increasing)
X, is simple Vi e N (simple)

Proof. We give a brief sketch here. See A 10.2.4 in S|A /& (Z, 7, A for a rigor. Recall that X ~!(a, b] =
{se€S:a<X(s) <b} =(a <X <b)isan event. Hence define

X1 :IX_l(l,oo)v
1 2 3
Xe=sbeag Tl Tl Thoes,

12

k—1
X3 = Z Tlxil(%’%] + 3IX71(3700)7
k=1

and so on. Then X; < X, < --- are the desired simple random variables. O

Figure 1: Visualization of X; and X»

We have already defined the Lebesgue-Stieltjes integral of simple random variables. Hence one can apply
the definition to X; < X, < --- presented above. Verify that P(X ~1(a,b]) = P(a < X < b) = Fx(b)—Fx/(a).
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Following the notion of cdf Fx, the Lebesgue-Stieltjes integrals of X; < X5 < --- are given as

Ep(X1) = (1 - Fx(1)),

Be(X2) = 5 (Fx(2) — Fx(3) + 2 (Fx(3) = Fx(2)) + 3 (Fx(2) ~ Fx(3)) +2(1 - Fx(2)),
Bp(Xs) = 3 S (Fx(55h) — Fx($) +3 (1~ Fx(3)),
k=1

and so on. It seems very similar to the Riemann-Stieltjes integral presented in Section 5.5 of S|4/ 2 (4,
4, Al). Now we are ready to define Lebesgue-Stieltjes integral of a nonnegative random variable.

Definition 3 (Lebesgue-Stieltjes Integral of a Nonnegative Random Variable). Suppose X is a nonnegative
random variable. Let {X;}32, be a monotone increasing sequence of simple random variables that converges to X
pointwise (as in the Proposition 1). Then the expectation (i.e, Lebesgue-Stieltjes integral) of X with respect to P is
defined by

EP(X) = lim ]E[[D(Xi)

i—o0
Note that this integral may not be finite.
The Definitions 2 and 3 coincide for a simple random variable.
Theorem 1 (Monotone Convergence Theorem). The above Lebesgue-Stieltjes integral is well-defined.
Proof. See <] 10.3.1in A= (A, A, AD. O

This theorem asserts that the Definition 3 does NOT depend on the choice of {X;}52;.

1.4 General Random Variables

Definition 4 (Lebesgue-Stieltjes Integral of a General Random Variable). Suppose X : S — R is a random
variable. Then the expectation (i.e, Lebesgue-Stieltjes integral) of X with respect to P is defined by

Ep(X) = Ep(XT) — Ep(X™)
if the two terms on the right hand side are both finite.
Proposition 2. Ep(X) is defined if and only if Ep(| X|) < oc.
Proof. |X|=X*T+X". O
Proposition 3. Fix a real number x. Then, Ep(XIx-1(,y) = aP(X " H{z}) = 2P(X = x).

Proof. We assume x > 0 first. Consider a constant sequence of simple random variables X; = xIx -1y, that
converges to X1y -1,y pointwise. Ep(X;) = 2P(X~'{z}) forall i = 1,2,---. A similar argument is valid
for the case z < 0. O
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Definition 5 (Absolute Continuity of a Random Variable). A random variable X : S — R is said to be abso-
lutely continuous on an open interval (a,b) if the cdf Fx of X is absolutely continuous on the open interval,
i.e, there exists a nonnegative function fx such that

Fx(x) 7Fx(a) = /w fx(t) dt

holds for all x € (a,b).
A random variable is said to be absolutely continuous if it is absolutely continuous on the entire line R. In this
case, fx is called the pdf of X. Mathematicians says fx is the Radon-Nikodym derivative of Fx.

Here are some remarks regarding absolute continuity.
* Note that absolute continuity is a bit weaker than differentiablity and a bit stronger than continuity.
¢ Every continuous, piecewise differentiable function is absolutely continuous.

Now we present an analogy to & 5.5.5 in |72 (A, &4, A).

Theorem 2. Suppose a random variable X : S — R is absolutely continuous on an open interval (a,b). Then,
b
EP(XIX’I(a,b)) = / .’L'fX (.’L‘) dz.
a
In particular, if X is absolutely continuous (on the entire line R), then
Ep(X) :/ zfx(z)d.

— 00

Proof. Beyond the scope of undergraduate analysis. O

1.5 Back to the Beginning

Now we are able to rigorously compute the expectation E(X) where its cdf Fx is given by

1—3e™3, 1>2
Fx(z)={3-3¢7%, 0<z<2
0, z <0

(even if its pdf fx does not exist.) Verify that Fx is absolutely continuous on (—o0,2) with its derivative

37371 2) () and also on (2, 00) with its derivative 3¢ 3715 . (2). Hence

EP(X) = ]EP(XIX71(—OO,2)) + EP(XIXul{Q}) + EP(XIX’I(Q,QQ))

2 0o
= / 51:2673"”1(072) (x)dx +2P(X =2) + / z%efsml@oo)(:z:)dx
oo 2

3 oo
=2P(X =2)+ 7/ re 3% dx
2Jo

1
—14 - =
+6

[SNIEN



Apr 11 2023 T2 5A 1 78 BEY

1.6 Law of the Unconscious Statistician (Very Optional)
Lemma 1 (Lebesgue-Stieltjes Probability on the Real Line). Given a probability space (S, F,P), suppose X :
S — Ris a random variable. Define B and Px by
B={BePR): X '(B)eF}
Px(B) = B(X~'(B)). (BeB)
Then, Px ((a,b]) = Fx(b) — Fx/(a) forall a < band (R, B,Px) is indeed a probability space.

Proof. (i) 0 € Bsince X~1()) =0 € F.
(i) If B € B, then R\ B € Bsince X' (R\ B) = X" '(R)\ X '(B) = S\ X"(B) € F.
(iii) If {B,}32, C B, then U2, B; € Bsince

(iv) Px (0) = P(X1(0)) = P(D) = 0.
(v) Px (R) = P(X~1(R)) = B(S) = 1.
(vi) If {B;}32, C B are disjoint events, then

Px (GBJ) =P (X_l (G&)) =P (GX_l(Bj)) ZiP(X_l(Bj)) ZiPx(Bj)-

From (i)-(vi), (R, B,Px) is a probability space. In particular, Px ((a,b]) = P(X ~*(a,b]) = Fx(b) — Fx(a). O

Theorem 3 (Law of the Unconscious Statistician). Let v : R — R be a continuous real function. Then wo X :
S — Rand u : R — R are random variables defined in the probability spaces (S, F,P) and (R, B,Px ), respectively.
In particular, one has Ep(u o X)) = Ep, (u), or equivalently,

]Ep(uoX):/ udPx.

—0o0

Proof. For simplicity, we assume u is nonnegative here. For B € B, it is obvious that Iz o X = Ix-1(p) and
hence

Ez(Ip o X) = Ee(Ix-1()) = P(X~(B)) = Px(B) = Ep (Ip).

Let {u;}$2, be a monotone increasing sequence of simple functions that converges to u pointwise. Then
{u; 0 X}2, is monotone increasing and converges to u o X pointwise. Therefore,

Ep(uo X) = lim Ep(u; 0 X) = lim Ep, (u;) = Ep, (u).
11— 00 11— 00

The continuity assumption of u is necessary to ensure that (u o X)~!((—oo,z]) € F for each z € R. O

As a final remark, statisticians write E(u(X)) = Ep(u o X) if no confusion can arise. (e.g. E(X? + log X))



Apr 17 2023

pdfS 2142 1) supportS YHEA] HAIso} Stk 71 ol

=9| pdfe SuHe T (1)

p* (1 =p)" o1, my(x) Ol T}
name | notation | support | probability density function | moment generating function
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t—2L ty (—00,0) \/%13(2) (1 + 3;) mgf does not exist
2
Student’s ¢ v>0
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Weibull a, >0 mgf exists if a« > 1
Z]
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Notes

Parameters

h(x_“

g

Q|+~

fxsp,0) =

ZolH, u, 05 Z}7} location, scale parameter2til F2ct. & Wy, EFHEALY = Q= Qict 07! 7] scale parameter?] ¢ HE
05 rate parameterztil F-Ec}. U 2] ¢ AHbA © & shape parametergtyl HEt}.

Gamma Integral

o > 0] thste] et et o] Bolget.

1) =102 n=0,1,-- Y O(n+1) =S < 4 Ak

Beta Integral
a, B > 0] ths}o]
_ > a—1 -z >~ B—1 Yq
M@ = [t edn [y e vy
:/0 /0 2 Yy le T Y dzdy
7| z = 2w,y = 2(1 — w) X|FHH O,y) _| w2 _ _solog
’ TN 0(zw) 1—w -2z -
1 [e'e]
F(Q)F(ﬁ)—/ / (zw)* 1 2(1 — w))? e * zdzdw
01 0
:/0 w1 —w)? 1dw/o 20T le=2
—I(a+8)
@aﬁm5>0ﬂmaﬂwﬂ@¢%Bmﬁw=ﬁgﬁgazﬁga@
1
B , — a—1 1— B 1d
(@)= [ w1 =y
7h A"t R T(L) = 7 de B S QA=W Hint. 0 € [0, 5] ol thate] w = sin? 6.
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Derivation

X ~ B(n,p) ol t € Rof tfjs}]

X ~ Negbin(r,p) ©]H ge! < 1Y o

= r—1\ , . = (r—1 . _ pel \ = [z —1 . N
E(etX):Zet”(T1 P =3 (Tl)@et) (ge')" " = (1(1) Z(Tl)u—qet) (ge")™"
=T =T T=r

X ~ Poisson(\) ©]H t € Roj| tffs}o]

E(eX) = iewe_)‘)\”’ e i (Ae)” oA HAet
x! x!
=0 x=0

X NMU-ltl(na (plv"' 7pk?)T)o‘|%t17"' 7tk € Roﬂ EH%]—O%

|
E(et1X1+"'+thk) — E eh1Tit +trT n
.1‘1! ce Z‘k!

Ti+txE=n
n!
= Y e (pret)

21!y
1+ t+ITE=n 1 k

(et 4t )"

X ~ Gamma(a, 3)0|H St <14 o

> 1 1
E(etX z/ et® O e B dy
=) e

~ iy G t>a vt

1

(aJl:,B) (F(a+[3+k))_/0 F(a+ﬁ+k)xa+k_1(1_x)ﬁ_ldx

I(a+ k)(B) Fla+ k)T(B)

=1

e} o] k—th momentE & & & 7 ofzh, t € Roj| tfjshod

XY — 1em1—‘(0‘+5)ma—1 Vs
) = [ gy 4

oldl z € [0,1] oA e < elfl o] B2 E(e!X) < eltl o]t} whabr] mgfr} HE ¢ € Rof| tjato] £A51L, A 2] 1.5.20] 2] A5t

iy = E(XF) o T(a+8) e=tF T(a+k)
E(ex)_’; T ) ;Hr(a+ﬁ+k)



p ~ Beta(a, §) ©]2L X|p ~ B(n,p)©|H z € {0,--- ,n} | tho}od
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a <$> L(a)I(B) <F(a+x)1“(6+n—x)> /0 I‘(a—i—x)l"(ﬂ—i—n—x)p (1-p) dp
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> 1 ,
E tX _ tx —a—1 54
@)= [ e e e s
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> t
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M

o] B mgfl= ZA|517] 9 =r}. Note. A7UHLIEL o] A k—th momento] A4S a 9} k o] T4 A= o] 9t} a > 00]7]gt

St B}z A o|E] 2wt k—th momentE 7} & o > k o]of git}. o] A%,

E(Xk) _ /OOO xk- F(al)ﬂa x—cz—lefﬂ—lggdaj
_TDla—k) [~ 1
- T(a)p* /0 ]_—‘(a_k)ﬁaka

=1

—(a—k)

1 —L
le™Be dy

X ~ Lyt 0) 01 Jot] < 190 0] = = =28 of efgle] dz = w0l w = rries o] WoH] d = (rfppdz0] B2

—Zz

E(e!¥) = ~ de :/OO t(quUz)eid
(e ) [me U(1+e_z)2 z 7006 (1+e—z)2 Z

1 ot
:eut/ v dw
0 1—w

— "D (1 — ot)T(1 + Jf)/o I( 2

Lot=1(1 _ )l=ot-1g4
1+ 0t)I(1 — Ut)w (1-w) v

=1
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X ~N(p,o?)olHt e RY off 2 = “ L of| tote] dz = Jdzo]H =

o) 5 ga = [ atwron L oostng,
/ 271'0 — o Vor
_ bt ho?t / e o02/2,
[o olIY

=1

X ~ Lognormal(u,o?)o]®H k= 0,1, - of tjs}e]

, oo 1 logz — )2
By = [ o (- ) o
(y—w? _
/ — e ( s ) dy (y = log z)
ohutk?o’ (AFE 2] mgf -G =748 THA] AFe H 2}

Ol Bk 2l ¢ > 09 thate] E(e™Y) = co Y-S H <l o] it
At > 0] t5}e]

Q] Aot 2 =50 2 mefs EAGHA eheth (v — oo 4 ) 1 AR e7L Wkieh) Note. bt upzbrha] 2
k—th moment©] ZAAJ-2 v 9} k O] th49t TS| o] Qlrt. v > 00]7|% HH EE 7L O] = 2|9, k—th momentS 7FA] 27
v > koJoF gt} o] -2, pdf7} even functiono] 22 k7} odd ¥ W] E(X*) = 00]1 k7} evend W z > 0] tfj5}o]

x? vz 1 v

TUTa? R Vg 2V z2(1—2)3

A () < (L
— rF(”)/ z 1+7 dz (pdf and k are even)
vTm ) 0
oT (vt Loy \? vit 1 v .
_ \/7751“2(;))/0 (1—z> (1—2) =2 3 72(1_2)3612 (substitute x by z)
F(VTl) ’“*1/1 b 1
= Vo2 z 2 1—2)"2 'dz
Nz L
= Jﬁ;"(”)yk?lr <k ; 1) r (V g k) (Beta Integral)
2
1 v
2 2

CHA 3 81 B2 EHAIR, o] BE =0l y > £ 1) 745 oI,
X ~ Weibull(e, ) ©

.

15
=S
V
=
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2 2|85}l

E(X*) = / xk%xa_le_(’”/ﬁ)adx = ﬁk/ Flee=2dy = gFT (1 + k)
0 (6%

0

g gk
ool =9k BE .8 > 0] disto] JPF O}, AOIBRE S| mghrt EAlsH] FIa)AE a > 10]o]of Fo] FeiA Ark
191 9ot € Roj tfato]

o )
E(etX) :/O etxgiaxa—le—(w/ﬁ)adx :/O exp <6t21/a _ Z) dz

Aol 2 > M = 2!/ < §7F s M > 00] st

oo

/ exp (—E) < 00
M 2

olm2 mgf7t BE ¢ € Rof thste] £Afgt}. o)Al 4] 15.29] o] stof

> k > k
E(etX>:ZE(k‘X; )tk:Z(ﬁkt') F(l-{-s)

k=0 ’ k=0

eh A& 4 Sk BEeA 0 = 191 A9l A < 191 1o thoko] mgirt 248 Zloleh. T o] F9 AR x| St

Related Distributions

Bernoulli(p) < B(1, p) p*(1—p)' "*Tjo,13(2) (#]| 2%0] Bernoulli 22)
Geo(p) £ Negbin(1, p) p(1 —p)* Mg, (@) (715} Geometric L)
Exp(3) £ Gamma(1, 3) 5 e P10 00y (%) (A4 Exponential £ 1)

& Gamma (3.2) r(2)12/2 (0,00 () FolAIE 2 X

Cauchy(0,1) < t, ﬁl(foom)(x) (ZA] Cauchy £3)

Unif(0,1) £ Beta(1,1) Tio.1)(2) (5 Uniform £.3)

Generalized Gamma Distribution

name | notation | support | probability density function | moment generating function
oluteld R E | GG(d _ P A1,/ E(X*
= 9’]— 1= 1— ( apyﬁ) (0700) F(d/p)ﬁdx € ( )
Generalized Gamma | d,p,3 >0 mgf exists if p > 1

Note. p = 10| 7B 27} 5|31, d = po|H Yo|BEE XV} 5|11, d = 1,p = 20]H YA F Half Normal EXZ (A HEXZE w2
shgw4-0] Azhe A7H7t Bk,
X ~ GG(d,p, 8) o9 (d,p, 8 > 0)
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= 7‘]‘?’1—6}0:] k=0,1,2,--- Oﬂ EH%]—Cq

A A P A Y
‘r<d/p>/o /3) ¢ 'ﬂ(ﬁ) o

& o7k p > 10]ehel mgf7h EA4sH}. He}s] p = 1o]ehel @A) The ek el sjgslal ek p > 1o]2kel ¢ € Rof thsto]

tX\ Ootz p d—1_—(z/B)P
]E(6 )—A ewm 6(/)dl'

_ F(;/p) /OO oo (Z)d_p =B % (;)p_ldx
0

1 /Oo ( 1/ d—p
= — exp | ftz /P + —=1logz—z | dz
I'(d/p) Jo p

M > 00] A5t z > M o] exp () ?te] Fo] —z/2 He} 2 |t 12| 2

CDF and Sampling Theory
P(X <) = F(z)©]aL U ~ unif(0,1) o]2tx & wff X &} F~H(U) = Ae}s] &2 27F F2 A ¥l 2. pdfollA] BT & Siet. F 9

inverseZ} EA|SHA 1o & ARG a1, EAISHA] F=thH T2 9] generalized versiong AR8-5h= Zlo|t

F~'(u) =inf{y € R: F(y) > u} O<u<l

o8 FolAnR X £ —flog(l - U) 7t AR
&-&. CDFE 53t sampling2 2 A A B2 32 o]
X ~ Gamma(w,0),Y ~ Gamma(3,0)°0]1 X

oo 2
H
Jo
A
kv

Y olH X,Y ¢ joint pdf=

1

_ a=1,8-1,—(z+y)/01 I
f(xvy) F(Q)F(ﬂ)9a+5x Yy € (O,m)(m) (0,00) (y)

2 FOBE g = 2w,y = 2(1 —w) 2 XT3} W = XLJFY ~ Beta(a, f) 942 &S 4~ Qlt.



Apr 25 2023 T2 5A 1 78 BEY

1 Drills and Skills: Random Vectors and Change of Variables

1.1 Recap: Differential and Regularity

Definition 1 (Differential). Let F' : R™ — R™ be a (real) multivariable differentiable function. If one writes F' by
F(xh'" 71.71) - (Fl(xlv"' 7xn)7"'Fm(x1a' o ,.’En)),

then for given p € R", the differential dF,, of F at p is an R-linear map R™ — R™ represented by an m x n matrix,

) - ()
de: . '.. E N
G (p) - GEm(p)

with respect to the standard coordinate of Euclidean spaces.

* Note: There are a number of equivalent notations for the differential.

aF 8(F17aFm)

dF, =dyF = DF, = D, F = %(p) = m(?) = Jr(p) =VF(p) =F'(p) = F(P) =

Definition 2 (Regularity). Let F' : R™ — R™ be a (real) multivariable differentiable function. A point p in the
domain, i.e, R™ is said to be a regular point of I if dF), is surjective, that is,

rank dF}, = dimim dF, = m.

A value c in the codomain, i.e, R™ is said to be a regular value of F if F~'(c) = 0 or every point in F~*(c) is
regular. A point that is not regular is called critical. A value that is not regular is called critical.

e Example: Consider f : R — R given by f(z) = 22% — 32%. Then, 0 and 1 are the only critical points; 0
and —1 are the only critical values.

e Example: Consider f : R? — R given by f(z,y) = 2? — y*. Then, (0,0) is the only critical point; 0 is

the only critical value.

1.2 Recap: Inverse Function Theorem

Now we focus on the special case m = n. In this case, as described in the Linear Algebra class, given p € R",
the followings are equivalent:

* dF, is surjective, i.e, p is a regular point by definition.
* dF), is of full rank, namely, n.

* dF), is invertible.

det dF, # 0.

* dF), is an R-vector space isomorphism.
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In fact, the Inverse Function Theorem says more than this.

Theorem 1 (Inverse Function Theorem). Suppose F' : R™ — R"™ is continuously differentiable. If dF), is invertible
for some p € R", then F is a local C*-diffeomorphism at p. That is, there exists an open neighborhood U of p such that
Fl|y : U — F(U) has its inverse F~' : F(U) — U which is continuously differentiable. Moreover, for all c € F(U),
the inverse F~1 satisfies

(dF ). = (dFp1(0) .

¢ The theorem writes in a more familiar way for the case n = 1:

—1y/ _ 1
SR (IO
1.3 Random Vectors and Change of Variables

A random vector is defined in a canonical way. To elaborate on this, for each j = 1,--- ,n, consider a
function 7; : R™ — R defined by

(w1, 2n) = T4

Such 7; is called the canonical projection, or equivalently, canonical surjection.

Definition 3 (Random Vector). Given a probability space (S, F,P), an n-dimensional random vector (-2}
8E W H) or n-variate random variable (- B8 W) is a function X : S — R" such that mj o X is a
random variable forall j = 1,--- | n.

* Note: In analogy to the case n = 1, an n-dimensional random variable is called absolutely continuous
if
1 Tn
P(XS(ZCl,,.’L'n)):/ / fX(t177tn)dtndt1

for some fx : R™ — Rx(, which is called the pdf of X.

Theorem 2 (Change of Variables). Suppose X : S — R" is an absolutely continuous n-dimensional random
vector endowed with a pdf fx. If an n-dimensional (real) continuously differentiable function v : R™ — R™ is defined
almost everywhere and assumes almost every reqular point, i.e,

P(JJu(X)] < o) =1, P(detdux #0) =1,

then' Y := u o X is an absolutely continuous n-dimensional random vector endowed with a pdf fy given by

= > )

| det dug|’
zeu~(y)

which is defined for all reqular values y € R™ of u. This pdf is well-defined since Y is reqular almost surely.

Proof. See Theorem 2.47 in (Folland, 1999). (It is beyond the scope of undergraduate calculus and analysis.)
Or equivalently, see 2] 4.1.2 (Che|Q WSS S3t HEWS52] &) in the textbook (2 EASH. [
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* Note: One may memorize the formula in an intuitive way: fy (y)|dy| = fx (z)|dz|.

* Note: If y is a regular value of u, then det du,. # 0 for all z € u~1(y) by definition. Hence, the fraction
on right hand side of the theorem makes sense.

* Remark: The assumption that X is regular almost surely is essential. Consider the following example.
Y = u(X), X ~ N0, 1), u(z) = eI 0) (x)

Then, v is an element in C*°(R) (the space of real smooth functions), i.e, has derivatives of all orders
at all points # € R. However, Y = u(X) may and does not admit a pdf since only positive points x
are regular and P(X > 0) # 1. Can you identify the cdf of Y instead?

2 Exercises: One-Dimensional

THE BASIS OF YOUR NEW KNOWLEDGE SHOULD BE YOUR PREVIOUS KNOWLEDGE.

2.1

Suppose the pdf of a random variable X is given by
1
fx(z)= 51(_1,1) (z) (called the Uniform distribution supported on (-1, 1))
Find the pdf of Y = X2. Can you identify the distribution to a known one?

21.1 ANSWER

Letu : (—1,1) — R be defined by y = u(z) = 22. Observe that P(Y = u(X) € (0,1)) = land u~(y) =
{=v¥,/y} forall y € (0,1). Hence one has

d d 1
o (6) = (VBB + 1D || = o)
which is the pdf of Beta(1/2,1).
2.2
Suppose the pdf of a random variable X is given by
Ix(x) = e "Lp,00)(2) (called the standard Exponential distribution)

Find the pdf of Y = 15
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2.21 ANSWER

Define u : (0,00) \ {1} = Rby y = u(z) = 1/(log z)?. After checking some regularity conditions for y > 0,
one has

d d
— -1/vy\ |2 1/ /vy | 2 /vy
fr(y) = fx (e ) a° + fx (e ) ’dye
_ A VAV P S ViV
=% (e e +e e ) L(0,00) (%)

2.3

Suppose the pdf of a random variable X is given by

1

fx(x) = m

I(—o0,00) () (called the standard Cauchy distribution)

Find the pdf of Y = % Can you identify the distribution to a known one?

2.3.1 ANSWER

It is easily verified that Y ~ Beta(1/2,1/2).

24

Suppose the pdf of a random variable X is given by

fx(z) = 1 e~ /2 (called the standard Normal distribution)

V2r

Find the pdfs of Y = e¥ and Z = X?, respectively. Can you identify the distributions to known ones?

241 ANSWER

Y ~ the standard log-normal distribution. Z ~ the x? distribution with degree of freedom 1.

2.5

Suppose the pdf of a random variable X is fx. Find the pdf of Y = p + 0 X for given y € R,o > 0.

2.6

Suppose the pdf and cdf of a random variable X are given by fx and F, respectively. Find the pdf of
Y = Fx(X). Assume fx is continuous and does not vanish everyehere, i.e, fx > 0.

2.6.1 ANSWER
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3 Exercises: Multi-Dimensional
YOU WILL BECOME MUCH STRONGER BY EMBRACING YOUR VULNERABILITIES.
3.1
Suppose the joint pdf of random variables (X,Y") is given by
fxy(zy) = 26_”5_2”1(0’00)(x)I(O,OO)(y) (independent Exponential distributions)
Find the pdfs of Z = min(X,Y) and W = max(X,Y), respectively. Describe the distributions.
3.1.1 ANSWER
Consider a function u : (0,00)? — R? that maps (X,Y) to (Z, W). Since P(Z < W) = 1, one has
fzw(z,w) = fxy(z,w) + fxy(w,z) =2 (6_2_2“’ + e_QZ_w) [0 < z < w < 00)

Some integrations show us that

fz(z) = / 2 (7272 4 e dw = 3e” (g 00)(2)
fW(w) :/ 2 (e—z—2w + e—2z—w) dZ — (2 (e—2w _ 6—311)) _|_ e—w _ e—Sw) I(O,oo) (’U))
0

Note that Z = min(X,Y’) follows the Exponential distribution with the summed rate = 3.

3.2

Suppose the joint pdf of random variables (X, Y") is given by

1
fxy(zy) = ﬁaxzy%_"”_yl(om) (7)L0,00)(y)  (independent Gamma distributions with common rates)

Findthepdfsof Z =X +Y and W = XLJFY, respectively. Describe the distributions.

3.21 ANSWER

Consider a function u : (0,00)?> — R? that maps (X,Y) to (Z,W). By restricting the codomain of v, its
inverse is well-defined by

uHz,w) = (2w, 2(1 — w)) ((z,w) € (0,00) x (0,1))

The differential of inverse evaluated at (z, w) is given by

_ w z
(du 1)(z,w) = [ ] y

l—w —z
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which has the determinant of —z. It follows that

fzw(z,w) = fx(zw, 2(1 —w))z = %(zw)Q(z(l —w))de 2 = 7710266_21(0’00)(2) - 60w?(1 — w)SI(O,l)(w).

Hence Z and W are independent. Z ~ Gamma(7,1) and W ~ Beta(3,4).

3.3
Let Xy, -+, X, beiid standard Uniform samples. That is,
Ixo e x, (@1, xn) = Ty (@) - Lo,y (2n)

Rearrange the samples in a non-decreasing way, say, X(;) < --- < X(;). Find the joint pdf of X(;) <--- <
X(n)- Find the marginal pdf of X ;) for each j. Describe the distributions.

3.3.1 ANSWER

Xy X (@) 5 Zy) =010 <2y <00 <2y < 1)

and

! , ,
Fxg (@) = m(%))]”(l —z(()" o ()

hold. Thatis, X(;) ~ Beta(j,n —j + 1) for 1 < j <n.

3.4

Suppose the joint pdf of random variables (X,Y") is given by

1
fxvy(z,y) = 7y5/26_(x2+y)/21(,00100)(x)I(OVOO)(y) (independent Normal and Gamma distributions)

307

Find the pdfs of X, Y, and Z = —2—, respectively. Hint: Consider a function u that maps (X,Y) to (X, Z).

ﬁ
~
-

3.41 ANSWER

It is a bit easier to consider a function v : (X,Y) — (Z,Y), not (X, Z). (My appologies...) Then v admits its
inverse defined by

w(zy) = (@) = (Vu/Ty).

Compute the differential and its determinant at (z, ).

_ Y7 52 _ —
(du 1)(2,21) = [ 0 2{ﬁ‘| , |det(du 1)(Z,y)| = y/7
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It follows that

T 307 2 7

1, 1+z2/7>
— exp [ =20 ) T oy ()T 0000 (9).
o7 p( 5 Y | L(—o0,00)(2)10,00) (¥)

Recall that [;° y3e™*dy = ['(4)A~* = 6A~*. Integrating out y gives the marginal pdf of Z, as desired.
f2)= [ Fav(au)dy
0
<1 1+ 2%/7 )
- exp (2100 g
/O 307T\ﬁy Xp ( B Yy ) ay
6 <1 +22/7>‘4
S 30mVT 2

16 22\ 7!
= m (1 + 7) I(foo,oo)(z)

* Note: In general, pdf of the Student’s ¢-distribution with degree of freedom v is given by

For the case v = 7,

r'4) _ 6 16
Vil (%) 7#% . % . % s 57r\ﬁ'

References
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1 Drills, Drills, and Drills

1.1 ZA$4d (2015

Suppose X ~ Unif(—2, 3). Find the pdf of Y for the following cases, respectively.

_ 1/2
(a)Y:3+2log§i—§ (b)Y:3<—log35X) (Y =X?
1.1.1 ANSWER
exp (L2
fY(y = ( 23 QI(—oo,oo)(y)a
2 (1+exp (42))
Fy(y) = Gye™ T 0,00y (1),
7 <0 4)
0, otherwise

1.2 Z<$4 (2016)

Suppose X, Y ~ iid Geo(p).
(a) Prove that U and V are independent where U = min(X,Y)and V =X - Y.
(b) Find the distribution of Z =

X+Y*

1.2.1 ANSWER

fX,Y(u7u)7 v=20
fov(u,v) =1 fxy(utou), v>0p=(1-p)>=2pT 5 .y (u)z(v)
fxywu—v), v<0

= (2= )1~ Py ) (520 - 9 a(0)

For m,n € {1,2,---} such that ged(m,n) =1,

m+n—2,2

fz(m+n) Zny (mk,nk) = (1 —p)tmtmh= 2p2——1_(1_p)m+n.

k=1




May 02 2023 T2 5A 1 78 BEY

1.3 Z$-E (2016)

Suppose X ~ Exp(\) and Y ~ Exp(u) are independent. Define Z and W by
. 1, Z=X
Z =min(X,Y) W =

(a) Find the joint distribution of Z and W'.
(b) Prove that Z and W are independent.

1.3.1 SKETCH OF ANSWER

We can NOT apply Change of Variables here. Hint: For z > 0, verify that

o CPY>X>z2) fzoo floo fxv(z,y)dydz
P(Z> =W =1) = P(X > 2lY > X) = o= = = Ty vvis
o CPX>Y >z [0 f) fxy(@y)dedy
P(Z > AW = 0) = P(Y > 2|X > V) = =520 = T ey (oo

Compare the two quantities.

14 94 (2015)

Suppose X1, Xo ~ iid N(0, 1).
(a) Find the joint pdf of Y1 = X7 + X7 and Y5 = X1 X»/YV].
(b) Find the pdf of Z = X /(X1 + X3).

1.4.1 ANSWER

T1T2
2.2
xi+Ts

that 22 — 23 # 0, then u=!(y1, y2) = {(71,22), (w2, 21), (=11, —22), (—22, —21)}. In addition, one has

(a) Consider a map u : (z1,xa) (mf + 3, ) Obeserve that if (y1,y2) = u(x1, x2) for z1, 22 € R such

Wiaran) = Bigr my) — | 2223sd)  miGi—ad)
@)’ (@3+ad)?

d(y1,v2) _[ 21y 2xo ]

and hence

2|x? — x2
|det dU(Il’I2)| = M,

2 2
r{ + 5
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all of which coincide for (x1,z2) € v~ *(y1, y2). Now the Change of Variables formula asserts that

thXz(:Clva)
|det du(xl 3:2)|
1 af + a3\ 2(af + 23)
=5 XP |\~ 2 _ 2
27 2 |27 —sc2|

fY17Y2(y1ay2) x4

1
= (26 v1/2 I(O:>o) Y1 ) ( \/7 ( 1/2,1/2) y2)> :

1
TL i+, )

(b) Consider a map v : (x1,z2) — (

1
z) = Ir(z ~ Cauchy(1/2,1/2
f2(2) e (ETEreY (2) ( ¥(1/2,1/2))

1.5 Unknown (2007, 2009)

Suppose X1, X are jointly distributed by
L 2, .2
f172(1‘1,$2) = ;I(O <]ty < 1).
Define Y} = \/X? + X2 and Y, = X, /Y.
(a) Find the joint pdf of Y7 and Y>.

(b) Find Cov (Y3, Ya).

1.5.1 ANSWER

Consider a map u : (x1,72) — (/22 + 23,21 /v/23 +23). Then u~ Yy, y2) = {(y1ye, Ty1/1 — y3)} for
(y17y2) € (05 1) X (_17 1) and

Iviva (1, v2) = (2v110,1) (1)) <7r\/117y21(—1,1)(y2)> .
— Y3

Since Y; and Y; are independent, the covariance is zero.

1.6 o]A-& (2009, 2020)

X1, X2, X3 are jointly distributed by
fies(z,y, 2) = 90e~@HHI[(0 < 2 < y < 2 < 0).

Prove or disprove: X, Xo — X;, X3 — X5 are mutually independent.

Note: There are at least two techniques you can apply. One is the joint mgf. The other is the change of variables.
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1.6.1 ANSWER OMITTED

1.7 ZA$4 (2016)

Suppose Z1, - - - , Zi are mutually independent and satisfy Z; ~ Gamma(c;, 3) foreachi=1,--- | K.
(a) Prove that

Zy ZK—1 .
(ZKZ“”’ZKZ>NDHmh””am'
1 4 1 4

(b) Suppose Wy ~ Dir(ws, -+ ,wk), Wa ~ Dir(v,--- ,vk),V ~ Beta (Zf Wi, Zf zxi>. Assume in addition
that W, W, V' are mutually independent. Define Z by

Z=VWi+(1-V)W,.

Prove that Z ~ Dir(wy + v1,- -+ ,wk + VK).
(c) Suppose Y = (Y1,--- ,Ygx_1) ~ Dir(ay,--- ,ax). Foreachi=1,--- | K — 1, prove that ¥; and

v (M Y Y Yk
—1i 1—1/;’ 71_}271_}2’ al_Yvi

are independent.

1.7.1 ANSWER

(a) See Lecture Note.
(b) Suppose that ©; ~ Gamma(w;, 1) and N; ~ Gamma(v;, 1) for each i = 1,--- , K and that they are all
mutually independent. Define Q@ = > Q;, and N = 2 N,. Then one has

d (4 0 3
K-
Wl—(Q . 1)JLQ~Gamma(zl:wm1)
K
Ny N,
WQi(N R S 1)J|_N~Gamma(21:%1)
Q
v 4

Q4+ N
As a consequence,

9 +N Qg1+ Nk
Q+N 7 7 Q+N

Z:VW1+(1—V)W2:< )NDir(w1+V1,"'7UJK+VK)
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since ; + N; ~ Gamma(w; + v;, 1) foreachi=1,--- | K.

(c) Suppose A; ~ Gamma(c;, 1) are mutually independent for each i =1, --- , K and write
_ 4
= e —
Zfil A
forj =1,---, K — 1. We now prove the statement only for Y_; without loss of generality.
Y = Y2 Yk
B T R
Ay Ar_1 .
= ’0.0, NDIr(aQ,."’aK)
<Zfiz AT A

and Y_; L (A4, Zfig A;). Observe that Y; is given by a function of 4; and Zf; A;. Concretely,

A Ay
Zfil A; A+ ZZK=2 A

i =

holds. It concludes that Y_; 1L Y7.
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0 Preliminaries (Common) - Matrix Series and Exponentiation Map

Let A be any n x n matrix. We define the matrix exponentiation map exp by

exp(A) = 1, +Z]A =I,+A+ A2+6A3
Jj=1

Proposition 1. Suppose A = SJS~" is the Jordan canonical form of the matrix A. Then,

exp(A) = Sexp(J)S~1.
Corollary 1 (Jacobi’s formula).

det exp(A) = '™,

Proposition 2. Suppose y(t) = exp(tA) for t € R. Then one has v(s + t) = vy(s)y(t),v(0) = I,,, and
d’ ;

—| ) =A

dt? |,

forallj=1,2,---.

Proposition 3. If AB = BA, then exp(AB) = exp(BA). In particular, exp(AA) = e exp(A) for A € R

Proposition 4. If the spectral radius of A is strictly lesser than 1, i.e, every (possibly complex) eigenvalue of A has a

norm lesser than 1, then

I+ A= (I, — A",
j=1
Z]A7 V= (I, — A)72

o 919 AHUEL SBATE WA P T LT A4 Y
20| 7, 902 ofe] Lolo 4 FE ojel o] H o] 9]

o S el SAS LA AL e 3420 vehtzol, o)

o uebA] o] Wo] 2| 2|3 100% o] 5} Roteletz 7

Zot 374 Afo]9] analogy'= Bt olshsho 3 AUt

Sk e, okelell A A4 vire] whgwt
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1 Introduction to Stochastic Processes (7]% S5 A Z)

THE BASIS OF STOCHASTIC PROCESSES IS THE GAMBLING THEORY. AS A REASON, ONE OF THE MOST
INTRINSIC TOPICS IN MARKOV CHAINS IS CALLED "GAMBLER’S RUIN.”

1.1 Markov Chain - Motivation
Pop quiz: Let (X1, X2, - - - ) be a sequence of iid Bernoulli random variables with parameter p = 1/2. Define
W=min{te{1,2,--}: X, o=1,X,.1 =0,X, =1}.

Find E(W). https://math.stackexchange.com/questions/816140/why—-is-the-expected-number
—coin-tosses-to-get-hth-is-10

First Attempt. Make a graph that represents the transition probability.
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Second Attempt. This looks a bit easier.

/(DO [(o
= Q/ R / R
& oD Ol == (ol ¥
\\) S N,
00| 5 O]

Final Attempt.

. 12 0 121"
P(W:w):§[0 0 1} 1/2 12 0 0] If10, 3 (w).
0 1/2 0 0

The probability decays exponentially w.r.t. w (by the maximal eigenvalue argument). Hence, one can assert
that E(W) = > wP(W = w) < oco. Indeedly, by appealing to the Proposition 4, one has

) o 12 0o 121" N
E(W):§[0 0 1> w2z 12 0 0
‘N
0| = 10.
0

w=l 10 1/2 0 0

12 0o —1/2]°
=20 0 1 {1/2 12 0 ] {

—_ = =

1
0
0

N |

0 -1/2 1

2 1
];[0 0 1}22{2 2
11
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1.2 Homogeneous Bernoulli Process

Homogeneous Bernoulli Process (g2} H|2%0] 3}7) of parameter p is a discrete-time homogeneous
counting Markov process (N;)i2, C {0,1,2,---} with Ny = 0, defined by a transition probability (Z°]
3}+8) as follows.

p, ngy1 =ng +1
P(Ney1 =1 Ne=ng) =S 1—p,  ngp1=my
0, otherwise

(Or equivalently, Ng = 0 and N; = 23:1 X where (X;)52, is a sequence of iid Bernoulli random variables.)
* "Homogeneous” means that p does not depend on time ¢.
¢ "Discrete-time” means thatt =0,1,2,---.
¢ ”"Counting” means that Ny =0,1,2,---.

e "Markov” means that for all ¢,

P(N¢y1|No, N1, -+, Ni) = P(Npy1|Ny)

Let
1-— 0 0
, "l - P(N, = 0 1
A= 0 » 1 , g(t) = [P(Ne=1)| | g(0)= |0
Then, one has g(t + 1) = Ag(t) for all ¢. Hence,
(1-p)
t(1—p)*~'p
g(t) = Ag(0) = t(tgl) (1—p)t—2p?| - (can be proved via induction on t)

Related distributions: Write W, = min{¢ : N; > r} (Waiting Time)
* Binomial distribution: N; ~ Bin(¢, p)
¢ Discrete Uniform distribution: W1 |Np = 1 ~ Unif{1,2,--- ,T}
* Hypergeometric distribution: N;|N7 = r ~ Hypergeo(r, T\ t)
* Geometric distribution: W; ~ Geo(p)

¢ Negative binomial distribution: W, ~ NegBin(r, p)
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1.3 Homogeneous Poisson Process

Homogeneous Poisson Process (2} Zo}4 FA) of parameter \ is a continuous-time homogeneous
counting Markov process (N, : t > 0) C {0,1,2,---} with Ny = 0, defined by a transition probability
(Fo] &E) as follows.

Ah+to(h),  musn =ne+1
P(Nt+h = nH_h\Nt = nt) = 1—-X\h + O(h), Ntth = Ny

o(h), otherwise
¢ "Homogeneous” means that A does not depend on time ¢.
¢ “Continuous-time” means that ¢ € [0, 00).
¢ ”"Counting” means that Ny =0,1,2,---.

e “"Markov” means that for all ¢, h > 0,

P(Ni4n|Ns, s < t) = P(Neyn|Ne)

Let
-2 0 0
\ v 0 ]P’(Nt 0 1
A= 0 A =\ ) g(t): ]P(Nt_l) , 9(0): 0

Then, one has ¢(t + h) = (I + hA)g(t) + o(h) for all ¢, h > 0. Hence, ¢'(t) = Ag(t) and

1

At
g(t) = exp(tA)g(0) = e | o2 | - (exp(tA) = e M exp(MI + tA))

2

Related distributions: Write W,. = min{t : N; > r}.
¢ Poisson distribution: IV, ~ Poisson(At)

¢ Continuous Uniform distribution: W;|N7 = 1 ~ Unif(0,T)

Beta distribution: +W,|Ny = r ~ Beta(s,r — s + 1)

Multinomial distribution: (N,r, Ngr — Npr, Nr — Ngr)|Np = r ~ Multi(r, (p, ¢ —p, 1 — ¢)) (Trinomial)

Exponential distribution: Wy ~ Exp(})

Gamma distribution: W, ~ Gamma(r, 1)

VWVS ~ Beta(s,r — s) (can be generalized to Dirichlet distribution)

Beta distribution:
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2 Exercises

21 Z<$4 (2016)

A2ty Wl g Ao AR = AFu L o] 7 HAYE A\ = 2(AZE) Q] ok ol 12l YloH
Hd Aol FAlE = AWH LY 7L E Ay = LAY 2ok ol = 12 Sgolrh. 3
Ve A2t W g Aol k¥ ~fw| o] Eakshr|7kA] o] A” AlZbo| L, Wi, = vlolH L A7 ofl kA
23 v Ydo] Lztstr|7k2] o] Ad Aztoltt.

(@) X = Aty md Aol @ IARE AY 6A17H2] 41 %= A v L o] =2fal A oJskat. X o] 7|k
I BARS shof )

(b) E[Vio|V2] & Al4Fstol et

(0) Va/Wo = FREEZALS Y6]11, 1 R4S otofet.

(d) P(Va > W) & Alhkstof et

22 74 (2015, 2017)
TAECI AR EobF I {N, 1 t > 0} ol A r A FAFo] Y Wj7h2] o] Al
W, = min{t : Ny > r} (r=1,2,---)

ooty & uf, kg B2l wotoer.
(2015 a) W, 3} N, ] A5 ol §5}e] 1 54 0] JHYshe o]f-5 Asfoier.

t r 0 — At k
A r—1_—Ay _ € ()‘t)
A LA 2

k=r

(2015: b) Var[]E(Wg + Wy + W5|W2)] £ JL5koiet
(2015: ¢) (Wy, Wy, Ws) O] EAFYE-& 5to] 2t
(2015: d) W1, W &) A2 aWy + bW, + c 2A]

E[(Wg — (an + bWo + C))Q]

= F| A8 St=a,b,cE Fotofet

(2015: ) X = W /Wy, Y = Wy /Wi et S ufj X &Y o] AGSEU LS

(2015: f) T = (1 — 3X2 + 2X%)Y* o] SFEU £ a}52 Fotole).

(2017:2) X = Wy /Wo,Y = W3/Wyetal & uf] X ¢t Y o] A5 = g4-5 Fotofet
(2017:b) Z = XY? o] g g4E ot}

(2017: Q) T = (4X — 1) 9] FEULI4E otofet

(2017: d) Cov(Nay, Nat| Ny) & -5hod e,

(2017: €) E[Cov(Ny, Nag| N5, )] & T3] et

i
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2.3 7$4 (2015, 2018)
a

Mg 5Yo]al FE0] 0 < p < 1 HEFO] A Xy, & W5 r(= 1,2, ) {1A] AJ-57%] 9] A 3838l
£ W, olztal & uf thzof Estofzt.

(2015: a) Cov(Wi, Wy) 9] g2 T5hodat.

(2015: b) Cov(Wa, Wa|W1) ©] 2+ 7:5kodat.

(2018: a) Wy = x Q1 ZONA (W3, Wa) " o] ZARSED LT pdfs a2(y, 2[x) & otelet,

(2018: b) Cov[E(W4|W2), E(Ws|W2)] 2} E[Cov(Wy, We|W2)] € F-5Fo1 =t

2.4 7194 (2018)

SHEHS X, o, X, 7k AR S0l 22} Poisson(\) BE (i =1, k) 2T,
N:X1+...+Xk’X:(X1’... ,Xk)T

oh & uf ok Fatofel.

@ N =n?l 2704 X o] 2ARGED S pdfxn (21, 2p|n) & Fotef 2t
(b) Var[E(X|N)] 2} E[Var(X IN )] —% 6}04 2}
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X b8 EX=1& Val)=I&.
Vo= Vo +Ve Vo LV Vorbamal®d) T obmne(8d)
EOVLIV) =V +E ()=, +4
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Midterm 2 Solution

1

Suppose X1, Xz ~ iid N(0, 1). Find the pdfs of

Y:

X VXZ+ X2

o X1+ puXo 7 X1Xo

respectively.

1.1 Answer

(a) By the representative definition of the Cauchy destribution, one has X;/Xs ~ Cauchy(0,1), i.e, the
standard Cauchy distribution. Hence, scaling and translating give

fr () = ! T (3).

TOo (1 + (%)2)

One may write Y ~ Cauchy(y, o).
(b) Consider a map w : (z1,x2) — (z,w) where

T1T2 9:% + x%
T w 5
V1 + x5

Note that u is a 4 — 1 correspondence and that

0(z,w) 23 2y
‘det’ _Ndet [ T @rrepe
a(xlva) 1 T

2 .9
= 7|m1 — 7| = V2w — 422
Vr? + o3

By appealing to the Change of Variables method, one has

2 —w
fxy(,mp) V2 e I(w > 22%).

z,w) =4
Jzw(zw) V2w — 422 T Vw — 222

Integrate out w to attain the marginal pdf of Z.

®2e \/Ee_zz2 /°° ]
z) = dw = s1/2e75qs lets =w—222>0
2O ), e o ( :
2 .o
=\ 2 (0(1/2) = V)

In fact, this is the pdf of N(0, (1/2)?).
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2

Suppose {N; : t > 0} is a homogeneous Poisson process of rate A. Define W, = min{t : N; > r} for each
r=1,2.--.

(a) Given positive integers 0 < k < I < m, find fy, |y, (y1|y2) where Y1 = Wy, /Wy, Yo = W, /W,,.

(b) Find E(Y1Y2). (c) Find Cov(Y1, Y2).

2.1 Answer
(a) Let Zy = Y3 — Y3. One has (Y1, Z3) ~ Dir(k,l — k,m — ). That is,

_ I'(m) k—1_l—k—1 m—l—1
fyvi,z, (Y1, 22) = FT( = BT(m =1 =2 (1—y1 — 22) In2(y1, 22,1 — y1 — 42),

where
A?={(a,b,c) eR’a,b,c>0=a+b+c—1}

Since ‘shearing’ (y1, z2) — (y1,¥1 + 22) = (y1,y2) has the Jacobian determinant 1,

_ L'(m) -1
fY17Y2(y1’y2) - F(k:)l"(l — k)I‘(m — l)y]f

(o —y1) "ML —go)™ 0 <y < 2 < D).

It is obvious that Y5 is marginally beta-distributed:

'(m)

fra(y2) = myé_l(l —y2)" (0 <2 < 1)

Dividing the two preceding equations yields the conditional pdf:

Fyitys (i lya) = g1 (yl)k_l (1 _ y1>l_k_11 <0 9 1>
i LR)T( = k) y2 \v2 Y2 Y2 '
This shows that the conditional distribution Y;|Y> is a scaled beta-distribution. That is,

Y

2

Ys ~ Beta(k,l — k).

(b) By appealing to the law of iterated expectations,

YQH =B {I;Yg] B I;nﬁfnf)m B nf((:n++1i)'

E(Y1Y:) =E {E <Y1Y22
Yo

(c) Since E(Y;) = £ and E(Y2) = L, one has

LRI+ kL k om—1  k(m—1)
Cov(¥1,¥2) = mm+1) mm mmm+1) m2(m+1)




May 16 2023 2o EA 15 A

3

Consider the following hierarchical models.

(a) Find Y where Y|N ~ Bin(N, p) and N ~ Poi(\).

(b) Find Y = > | X; where X;|p; ~ Ber(p;) and p; ~ iid Beta(a, 3).
(c) Find Y where Y|X ~ N(0,1/X) and X ~ Gamma(Z2, 2)

27 n/"

3.1 Answer

All we need is the law of total probability.
(a) Y is discrete. Y ~ Poi(Ap) since

00 - . nei}\
— Z fyin(yln) fn(n) = (y)py(l fp)”*y)‘

n!
n=0 =y

_ (p)re f: AL =p)Y

v = (=)t
Ap)Ye > _ Ap)Ye P
- ()y'e/\(l P) — ()y,1{0,1,2,--~}(y)-
(b) Y is discrete. Y ~ Bin(n, o/ (a + 3)) since
fY(y) / : / HfX |pi 1’2|p1)fp (pz)dpl d
1+ +w =y Pn €[o, 1] p1€01]Z 1

— 1 MM a-1¢1 _ . \B-1
Z /6[01] A sz 1 pz F(O[)F(ﬁ)pz (1 pl) dpl dpn

z1+-Fz,=y Y Pn 1€[0,1] 5=

Z H/ Oé + 6 a+:1: (1 _ pi)[3+1—m7¢—1dpi

1+ trp=yi=1

Z H onrﬂ +9:Z) B+1—u1;)

T1t++Tp=yi=1 (a+ﬁ+1)

:z1+;w -Hl( ) <ai,6)1mi

() GH) G)

(c) Y is continuous. Y ~ ¢(n) since

. n/2
71:y2/2 (n/2) / xn/Zflefnz/QdI
v27r I(n/2)

/ fY|X ny fX

- (”/2 )"/ Oox(n+1>/2—1e—(y2+n)x/2 "
" V2rl(n)2 >/ !

_ (n/2)n/2 T((n+1)/2) _ I'((n+1)/2) (1 N y2>—(n+1)/2
V2rT(n/2) ((y2 +n)/2)" D2 /nrl(n/2) '
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4
(a) Suppose X ~ Poi(1). Find the values a € {0, 1,2, - -} such that E[g,(X)] exists where
ga(x) - (l‘ - a)!I{a,a+1,--- }(l‘)

(b) Suppose X ~ Gamma(a, 1) and Y ~ Poi(z) for & € Nand z > 0. Show that P(X <z) =P(Y > a).

41 Answer

(@) Fora =2,3,--- , one has

E[QG“NZZ@—G)!Z:ae_lz[(i_a)?—(xﬂ—a)!:e— L e

It is obvious that E[g,(X)] = oo fora = 0, 1.
(b) Consider a homogeneous Poisson process of rate 1. Then X and Y represent W, and NV,, respectively.
(W, < z) and (N, > «) are the same events.

5
Suppose X1, -+, X, ~ iid N(u1,0%) and Y, - -+, Y, ~ iid N(ua,0?). Prove that

(X —Y) — (11 — p2)
Sp\/nl_l —|—n2_1

-1)S37 -1)S;3 _ .
(na=1) ;:(;2 )% with n = ny + no.

T =

~t(n—2)

for the pooled variance S =

51 Answer
By appealing to the normal sampling theory,

2

— o

X—MNN(O»E) (m —1)87/0” ~ x*(m — 1)
2

— o

Y*MQNN(O,n?) (no — 1)S3/0” ~ x*(na — 1)

and they are all independent. Hence,

(X —Y) — (11— pa)
U\/nfl —|—n§1

are independent and T = —Z— ~ {(n — 2) by the representative definition of the ¢-distribution.
P Trios - 2)by P

7 =

~ N(0,1), V=(n-2)5/0"~x*(n-2)
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6

@

Suppose X1, -, X, ~iid L(0,1) forn > 2, ie, f(z) = {iteryz- Find the pdf of

Y = 1o 1+ exp(—=X(1))
) 1 + eXp(—X(n))

where X, denotes the r-th order statistic for eachr =1,2,--- ,n.

6.1 Answer

The cdf is given by F(z) = (1 4+ e~*)~!. By appealing to the theory of probability integral transform,
d
F(Xr) =Uwm

where Uy, - -+, U, ~ iid Unif(0,1). Note that Y = log(F'(X(,))) — log(F(X(1))) 4 log Uy — log U(yy. Recall
that (U(y), U(y)) are jointly distributed by

n!

(n - 2)! (U(n) N u(l))n721(0 <u) <Um) < 1)'

fU(l).,U(n)(u(l)vu(n)) =
Now, consider a map

g (u), Umy) = (v,y) = (—loguq),logue) —logu,).

The inverse g~! is given by (v,y) — (e™?, e¥~") and hence the Jacobian determinant is given by
_ v 0

det ( ¢ >
_eUmv Y

(V™Y —e )" 2V (0 < y < v < 00).

|detdg™!| = = eV,

Apply the change of variables:

fvy(v,y) = (n T

2)!
Marginalize with respect to Y
n! >
Frlo) = e = e [ e
(n—2)! Y
=(n—1)(e¥ —1)"2e¥e ™
= (n=1)e7(1 = e™")""L(g,00)(1)-
As a remark, fory > 0,
d
— 2 (1—¢e¥ n—1
fr(w) = 41—
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7

Suppose that a bus arrives at a bus stop following a homogeneous Poisson process of rate A\. Given time
T'(> 0), let W be the waiting time difference between the first and last passengers who arrived at the station.
Compute E(W).

71 Answer

Assume total N > 1 passengers have arrived. If one writes the waiting times of the passengers by Wy, --- , Wy,

then W, is marginally beta-distributed for eachr =1,--- , N:

1
TWT|NT = N ~ Beta(r,N —r +1).

Thatis, E(W,|Nr = N) = 75T By the linearity of expectation, one has

E(Wy — Wi|Np = N) = ——T.

Now observe that

— >
o Wy =W N>
0, N=0

and apply the law of iterated expectations:

E(W) = E[E(W|Nr = N)]

[
&
=

=
2
%
=

M

n=1 m=2
=((eM-1)- A (M —1- AT)) Te
2 2
= (T-3)+(T+ X)e*”

* Please report any errors you find.
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1 Multivariate((MVT) Normal Distribution

Bold characters XYZ denote vectors or matrices. Usual characters XY Z denote scalars.

1.1 Characteristic Properties of MVT Normal Distribution

Definition 1 (MVT normal distribution: non-degenerate case). Let 4 € RP and 3 > 0. (X isap x p real
positive definite matrix.) A p-dimensional random vector X is defined to be (non-degenerate) normally-distributed if
it admits a pdf

P) = (den(2r2) 2 exp { e )= - ).

One writes X ~ N, (p, 3).

Proposition 1 (Translation and shaping). X~/2(X — p) ~ N, (0,1, where
> = EI/Q(EI/Q)T

is the Cholesky Decomposition of 3.

Proposition 2 (Characteristic property I of the multivariate normal distribution). Suppose X ~ N, (u, X).
Define Y =t X provided that t € RP is a p-dimensional vector. Then, Y ~ Ny(t" pu,tT Zt).

* This can be proved via the moment generating function of X. Note E(et' X) = exp(tTpu + 1t Tt).
Then, what is the mgf of t T X, namely, E(¢*t ' X) for real s € R? What does it imply?

¢ In fact, this characteristic property defines the multivariate normal distribution.

Definition 2 (MVT normal distribution: general case). Let p € RP and 3 > 0. (X is a p x p real positive
semi-definite matrix.) A p-dimensional random vector X is defined to be normally-distributed if

t'X ~ Ny(t p,t' Tt)
for ALL t € RP. If ¥ > 0 in addition, then the Definitions 1 and 2 coincide. If 3 # 0 on the contrary, then 3 is

NOT invertible and X does NOT admit its pdf. Nevertheless, X is normally-distributed (degenerate case).

Proposition 3 (Independence of multivariate normal distribution). Suppose (X,Y) ~ multivariate normal
distribution. X LY if and only if Cov(X,Y) = 0.

* (Question: replication) Suppose X ~ N(0,1). Is Y = (X, X, X) normally-distributed?

* (Question: marginality) Let {e;,--- ,e,} be the standard (orthonormal) basis of RP. Suppose X is

a p-dimensional random vector such that e} X is normally-distributed for all & = 1,---,p. Is X
necessarily normally-distributed?

* (Question: independence) Suppose X ~ N(0,1) and Y ~ N(0,1) with Cov(X,Y) = 0. Are X and Y’
necessarily independent?

Proposition 4 (Characteristic property II of the multivariate normal distribution). Suppose X ~ N, (p, X).
Define Y = AX + b provided that A is a q x p real matrix and b € R, Then, Y ~ Ny(Ap +b, AXAT).
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1.2 True and False Implications

Multivariate Normal <= Jointly Normal = Marginally Normal #= Jointly Normal

Jointly Normal + Zero Covariance = Independence — Zero Covariance

¢ Marginally Normal + Zero Covariance #= Independence

¢ Marginally Normal + Independence = Jointly Normal #= Independence

* Key counterexample: X ~ N(0,1) L Z ~ Ber(1/2) and let Y = (—1)? X.

Then, Y ~ N(0,1) and Cov(X,Y) =0but X [ Y and hence (X,Y") % MVT Normal.

1.3 Quadratic Forms in Normal Random Vectors

Theorem 1 (Quadratic form through a real symmetric idempotent matrix). Suppose X ~ N,(0,0%L,) and A
is a p X p real symmetric idempotent matrix of rank m < p. Then,

L 2
Y:;X AX ~ x*(m).
* Note that A can be interpreted as a projection map onto an m-dimensional subspace V" of R” and that

(degree of freedom) = m = trA = rankA = dim imA.

* Moreover, I — A is a projection map onto the orthogonoal complement V+ of V.

p—m=tr(I—A)=rank(I— A)=dimim(I - A).

* (Example) For p = n, A = 11,1 represents a projection onto a (1-dimensional) line generated by
1,, € R One the otherhand, I — A =1, — 11,1 represents a projection onto 1, which is (n — 1)-
dimensional subspace of R". By some computation, one has

A~ (n—185% 1 & - 1 5 1
X5 X1, ———=— d (X -X)? = S IT—A)X|* = EXT(I — A)X ~ x}(n —1).
j=1

o2

Proposition 5. Let X ~ N,(0,1,), A be a p x p real symmetric matrix, and B be a k x p matrix. f BA = 0, then
BX and X" AX are independent.

* Now, explain why X 1 S2.
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2 Exercises

21 Z<$4 (2016)

Suppose

Define Y1 = X1 — XQ,}/Q = X1 +X2.
(@) (X1, Y1) o] REE Fstoiet
(b) Y1} Yo = Y2 Hojet

22 oJA&- (2020)

Suppose Z ~ N,(0,1,). Let A be an arbitrary real symmetric idempotent p x p matrix. That is,
AP=A=AT

Prove that Z" AZ ~ x?(trA). Now suppose X1, -+ , X,, ~ iid N(0, 02). Prove that

(n—1)8* T, (X;— X)?

~x*(n—1).

o o2

2.3 ZA$4d (2015

Consider the following linear regression model.

y=XB+e
e ~N,(0,0%V)

where X is a real n x (p + 1) matrix of column full rank and V is a known n x n positive definite matrix.
Assume n > p + 1. Justify that

B\ _ (XTV_1X)_1XTV_1y,
o> =(y -~ XB) TV 'y - XB)/(n—p - 1).

Prove that

(8 - ﬁ)TXTV—iX(ﬁ - 8)

~F l,n—p—1).
b+ 1)o7 ety
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2.3.1 Answer

¢ Justification of the estimators (Optional: Studied in Regression Analysis class)
Consider 8 = (83,02). First we compute an MLE (Maximum Likelihood Estimator) 8 = (33, ;5) for 6. The

likelihood is given by

£(0) = (er(202V) ™ 2exp (51 (v - XB) TV y ~ X))

Take a negative logarithm:

~log L(9) = } los(o”) + %(y ~XB3)TV-!(y — XB) + (constant). (1)

We are to minimize (1) with respect to 3, o%. The equation (1) shows that minimizer ,@ does not depend on
the choice of o2. That is,

~

B = argmin(y — X3)' V7 (y — X3) )
IBE]Rerl
= X'V IX)"'XTvly, ®)

This can be justified in a number of ways. Firstly, one may take a derivative:

%—T(y -XB) TV iy -XB)= —2X"Vly + 2XTV1X3.

Solving % = 0gives 8 = (X V!X)"!XTV~ly. Orif one writes y = V~'/2y and X = V~1/2X, then

~

B = argmin(y — X8) 'V (y — X3)

BERP+1
= argmin(y — X3)" (¥ — X3)
BeRp+1
= (XTX)"'XTy

= (XTVIX)"IXTv-ly.
Now we are to minimize (1) with respect to o2 given (3). Observe that

argmin — lo (0?) + ¢ _¢
ag2>0 9 %8 202 n
and hence o2 = (y — XB8)TV~1(y — X3)/n. However, the MLE 02 = (y — X3) TV ~!(y — X8)/n is biased.
A simple correction suggests an unbiased estimator for o2:

o~

o2 =(y— X,@)TV’l(y — XB)/(n —p—1). (So-called, MSE (Mean Squared Error))

Unbiasedness of the estimator will be verified soon.
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e Distributions of the estimator 8 (ZBEA A H-& Aolat FHEA wS4Hol 7|H5H= vt2 1A

We start from the fact that
N.(XB,o%V). (That is, the regression model is well-specified.)
Every linear map preserves normality of a random vector (Proposition 4). Therefore,
B-B=X"V X)XV ly -8~ Ny (BB B), Var(B - )
where

E(B-B) =XV X)XV I(Xp)-B=0,
Var(lé\_ /8) — (XTV_1X)_1XTV_1(UZV)V_1X(XTV_1X)_1 —_ UQ(X—rv—lx)—l

Then the Proposition 1 ensures us that

1 a ~
~(XTVIX) (B = B) ~ Ny (0,Tp1),
1 ~ B ~
—(B=B)TXTVIX(B-8) ~x*(p+1).
On the other hand, observe that

V2 (y —XB) = AV /2y = AV 12 (y - XB) 4)
(This step is not trivial at all. Please check it by yourself!)

where
A=1-VI2XXTVv-Ix)"i1xTv-1/2

is an n x n real symmetric idempotent matrix. Define Z = V-1/2(y — X3). If the regression model is
well-specified, then Z ~ N,,(0,52I) and V~Y/2(y — X3) = AZ by (4). It concludes that

NS R
e 2D Ly - XB)V " (y - XP)
= ,(A7)"(aZ)
— EZTAZ ~ X% (tr(A)). (Theorem 1)

Commutativity of trace operator (ie, tr(PQ) = tr(QP)) proves that tr(A) = n — p — 1. We are almost done.
It only remains to prove that 8 I o2. Recall that 8 = (XTV~'X)~'XTV~ly and that

(n—p—1)o2 = HAV*I/QyH2. (See (4))

By appealing to the Proposition 3, it suffices to show that (X V™!X)"!XTV~1(¢2V)V~1/2A = 0. (why?)
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1 L"-spaces and Modes of Convergence

We are given a fixed probability space (S, F,IP). Recall that a random variable X is a measurable function
X : S — Rand that E(—) = [, (—)dP.

Definition 1. Fix 0 < r < co. L"-space is said to be a space of random variables with finite r-th moments.
L"(S, F,P) ={X : E(|X]|") < oo}
Definition 2. Fix r = co. L*-space is said to be a space of random variables with finite essential supremums.

LS, F,P) ={X :inf{la e R: P(X > a) =0} < oo}
={X:{a€eR:P(X >a) =0} #0}

Proposition 1. By appealing to the Lyapunov Inequality previously described in the Chapter 1, one has
Ll2L22---2LT2---2L002{X:{E>OZ]E(6tX)<OO,‘t|<6}7£®}
Fact1. Fix 1 <r < oco. L"-space is a complete normed vector space, i.e, Banach space.
1X I, = E(X[)".
Fact 2. Fix r = 2. L?-space is a complete inner product vector space, i.e, Hilbert space.

(X, Y) 2 = E(XY), [|X]| 2 = (X, X) 2.

Actually, we identify X = X’ if P(X = X’) = 1. Now fix r and consider a sequence (X,,)22; of random
variables in L"-space. There are at least five modes of convergence in L"-space. Of course, we only handle
two of them in this course.

Definition 3 (Modes of Convergence).

Xn(s) = X(s)Vs e S (pointwise convergence)

P{seS:X,(s) > X(s)}) =1 (almost sure convergence)

E(|X, —X|") =0 (convergence in norm)

P({s€S:|X,(s) —X(s)] >¢€}) = 0Ve >0 (convergence in probability)
P(X, <z)—>PX <z)Ve eR (convergence in distribution)

You only need to understand the last two concepts.
e Prove that X,, > X if and only if

Ve>0,3N,n >N =P(|X, — X|>¢) <e¢

The central topics in this course include the followings:
* WLLN
* CIT
¢ A-Method
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2 Exercises: CLT and the A-method
2.1 o]A& (2016)

Suppose X1, -, X,, ~ iid Beta(a, 1) with o > 0 and define Y,, = min X;. Find r > 0 such that n"Y,, admits
a limiting distribution. Find the limiting distribution.

2.2 O]A& (2016)
Suppose X1, -+, X,, ~ iid N(0,0?) and 2 > 0. Prove that

Xzt Xm

d

—Lm=1Tm 4N, ).
n 1/2
(S, x2)Y

Find the distribution of

1

Y = .
k n
L 2 Xo Do X0

2.3 °]A-§- (2016)
Suppose that

(X1, Y1), (Xn, V) ~N (

M1 U% pPO102

pa |’ | poros o3
We have shown that /n(p, — p) 4 N(0, (1 — p?)?) as n — oo in the textbook. Now, find a function
g:(—1,1) = R such that

Vi(g(pn) — 9(p)) % N(0,1).

24 794 (2017)

Suppose X1, Xs, - - - ~ iid Ber(p). Define the r-th waiting time by W,, = min{n : . ; X; > r}. Define

Find the limiting distribution of +/r(p, — p) as r — oo. Find a variance stabilizing transformation g such
that

Vr(g(hr) — g(p)) > N0, 1).
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25 7194 (2015)
Suppose U1y < Ug) < - -+ < Uy are order statistics based on random samples from Unif (0, 1). Define

_ Uy

R, = —.
n U(n)

Find r > 0 such that n"R,, admits a limiting distribution. Find the limiting distribution.
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1 Limiting Distribution = Asymptotic Distribution
ofelo] 7| ERASE Foluw the /b Aol 9T 4 9 Holet /gy ck
o 55 10 5EAL Sel7t o wl 9Tk
- 1187 Shbgt Foluhs 5T 23 L 4 9Lg. ol S5 20] 1A 8 FE.
o B 1R 9 A Slelok shesb2()

- FAE EUEH o7t EHS (3%, |
A2 E7HE S o 9, 7ol AFEEE SHIA H 1% ol 8" makes no sense. A= 532
1-47%-& 712 0 2 731 7h= =215 A| 19] climaxo] &L, 2] 54| 29] A2 Q.
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Ex
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1)
B
B

I
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lo
M4
o
oft
Dl
ot
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3§
=
juir
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1.1 o4& (2016++)

Suppose X1, -, X,, ~ iid Beta(c, 1) with a > 0 and define Y,, = min X;. (n > 2)
(a) Find 7 > 0 such that n"Y;, admits a limiting distribution. Find the limiting distribution.
(b) Prove that

,\ n—1
AUn = ——=n 7 . v
- Zi:1 log X;
is an unbiased and consistent estimator of «.
(c) Show that
Vn(log@, — loga) % N(0,1)
asn — oo.

1.1.1 ANSWER

(a) Recall that X ~ Beta(a, 1) has a cdf given by

1, r>1
Fx(z)=<z% 0<z<1
0, <0

Now for y € (0, 1), one has

which implies that
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holds for t € (0,n"). If r > 1/a, then for each fixed positive real ¢ > 0,

T()é,,Ll —ra

> \"
lim P(n"Y, <t)= lim 1-— (1 - )

n—oo n—o00 nre
= lim 1—e " " =0
n—oo ’

which concludes that n"Y,, does not admit its limiting distribution, i.e, diverges. (0 cannot be a cdf!) Note
that the preceding argument makes sense solely because for every fixed positive real ¢ > 0, it is guaranteed
thatt € (0,n") is true for sufficiently large n. On the other hand, if » = 1/« then for each fixed positive real
t>0,

n— 00 n—o00 n

t\"
lim P(n"Y, <t)= lim 1-— <1 - )

o
=1-e",

which concludes that n"Y;, % A where A is defined to has a cdf given by

1—e ", t>0
FA(t):{ 0 t<0

As a remark, the distribution of A is called the Weibull distribution after Swedish mathematician Waloddi
Weibull, who described it in detail in 1951. One may write A ~ Weibull(,1). (No need to memorize)
Finally, if 0 < r < 1/a, then it is a direct consequence of Slutsky’s Theorem that

n'Y, =n""&naY, 50.A=0.

(Youmay avoid applying the Slutsky’s Theorem here. You may equivalently give a reason that lim,,_, .. P(n"Y,, <
t) = 1forall t > 0.) In sum, one concludes that n"Y;, converges in distribution if and only if 0 < r < 1/«
and that

diverges, r>1/a,
nY, 5 A~ Weibull(er, 1), 7=1/q,
0, 0<r<l/a

It suffices for tutees to define A by providing its cdf.

(b) Recall the notion of probability integral transform. One has Fx (X) 2L U ~ Unif (0,1). This ensures us
that (X;)® 4 U;foreachi=1,--- ,nwhereUy,- - ,U, denote n iid random standard uniform samples. The
notion also suggests that —log U; 4 Z; where Zy,- -, Z, are n iid random standard exponential samples.
As a consequence, one may write

- Z?:l log X{* - Z?:l log U; - E?:l Z; 4

Qn n—1 d n—1 a n—1 4gn-1
o
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where V' ~ Gamma(n, 1). Now it remains to show that
-1 -1
E (nv ) =1 and nT 5.

To begin with, V admits its pdf fy defined by

1

fv(v) = mv”ﬂe*”I(om) (v).

In order to find the distribution of W = 1/V/, consider a differentiable map (0, 00) — (0,00) : v = w = 1/v.
Change of variables method gives us that

dv
dw

1
= g (D)~ 1/wy

1 —(n— —1/w
fw(w) = =——w~ " He=1/ I'(n) (0,00) (W).

)= T

As a remark, the distribution of W is called the Inverse Gamma distribution, which is very intuitive. One
may write W ~ invGamma(n, 1). (No need to memorize. Will be described in detail in the Bayesian course.)
Hence, it is natural that

1 1 1
o0 ~(nt1) = 1/wy / —ng-1/wg / - ~(n=1) = 1/wy 1
—w e w = —w e w = - w e w = 1.
A I'(n) o T'(n—-1) o I'(n—2)

The three integrands represent the pdfs of invGamma(n, 1), invGamma(n — 1, 1), invGamma(n — 2, 1), resp.
It is a direct result of the equalities that

BOV) = ) =
oy I'(n—2) 1
WO ST T ey
1
Var(W) = m

We have shown that E((n — 1)W) = 1 and that Var((n — 1)) — 0 as n — oco. These end the proof.
(c) We have observed above that &, /« < (n—1)/V where V =3""  Z; and Z; ~ iid Exp(1). By appealing
to the Central Limit Theorem, one has

1 n
N (n Zl Z; — E(Z1)> 4 N(0, Var(Zy)).
This may be rewritten as
vn (W - 1> 4 N(0,1).

Apply the A-method for g = —log; one has (¢/(1))? = 1:

~

+ log % - 0> 4 N(0,1).

n

Vn <1og

n—1
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The proof is done by the fact that \/nlog "5 — 0 as n — oo. The fact is obtained by the Mean Value

n
n—1

Theorem (high school analysis):

n  logn—log(n—1) 1 1

n—1 n—(n—-1) ¢ n—1

for some ¢, € (n —1,n).

1.2 o]A& (2016)
Suppose X1, -+, X,, ~ iid N(0,0?) and 2 > 0. Prove that

ZZL:l Xm

d
_Zem=1mdong ),
n 1/2
(S, Xx2)Y

Find the distribution of

1

= o o
1+ Zm:l m/ Zm:k’-l—l m

1.2.1 ANSWER

Apply the CLT:
1 n 4
— X, — N(0,1).
ﬁ(ngmzl " 0>—> (0,1)
Apply the WLLN:
1 zn: X2 5
no? m
m=1

On the both sides, take (—)~!/2, which is continuous at 1:

n -1/2
Vno (Z XE,L) 1.
m=1

Hence by the Slutsky’s Theorem, one has

N n —1/2 "

m=1
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On the other hand, let

—k
i = Z X2 ~x%(n—k) 2 Gamma (n2,2>,

m=k+1
- 2 2 d k
Vo = ZXmNX (k) = Gamma 5,2 .
m=1

As a result, one has

Yy —
i+W,

1.3 o]A§ (2016)
Suppose that

(X1, Y1), , (Xn,Yn) ~N (

K of po102

pa|’ |poios o3
We have shown that v/n(p, — p) 4 N(0, (1 — p?)?) as n — oo in the textbook. Now, find a function
g :(—1,1) = R such that

Vilg(pn) — 9(p)) % N(0, 1).

1.3.1 ANSWER
By appealing to the A-method, it suffices to find ¢ such that

1

(¢'(p)* = m

One possible answer is as follows:

1 1 1 1. 1+p
= | — 4+ ——dp=—-log—F—.
9(p) 2/17p+1+p,0 sloeT—,

g is called a variance stabilizing transformation. As a remark, if g is a variance stabilizing transformation,
then so is

h=+4g+C,

where C is an arbitrary constant. Conventionally, however, we choose g that is increasing.
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1.4 7124 (2017)

Suppose X1, X», - - - ~ iid Ber(p). Define the r-th waiting time by W,, = min{n : >_ ; X; > r}. Define

Find the limiting distribution of +/r(p, — p) as r — oo. Find a variance stabilizing transformation g such
that

Vr(g(hr) — g(p)) > N0, 1).

1.4.1 ANSWER

Define V; = W; — W,;_; for each i = 1,--- ,r with Wy = 0. Then V3,---,V, ~ iid Geo(p) satisfy W, =
Vi + -+ V,. By the CLT, one has

Jr (Wr _ E(Vl)) 4 N(0, Var(V7))

r

and hence

Apply the A-method to obtain
VEBr —p) S N (0,p%(1 - p)).

Now it suffices to find g such that (¢'(p))? = 1/(p*(1 — p)). One possible answer is as follows:

d —2ud 1 1 1-— 1—-y1-
o) = [ [ = [ e g = o L
pVv/1—p (1 —u?)u l—u 14w 1+u 1+y1-p

(Substitute u for /1 — p.)

1.5 794 (2015++)
Suppose U1y < Ug) < -+ < Uy are order statistics based on random samples from Unif (0, 1). Define

_ Uy

R, = .
Um)

(a) Find s > 0 such that n®R,, admits a limiting distribution. Find the limiting distribution.
(b) Prove that Uy, % 1 asn — oo. Find the limiting distribution of n(1 — Uy,)).
(c) Find the pdf of

_ Uan)”
Uy Uy



Jun 06 2023 T34 1 7 F&EY

foreach1l < r < n.

1.5.1 ANSWER

(a) Recall that forr = 1,--- ,n, one has

d a Vi Vs V.
~logUpn—ri) = 2 = -+ =g+t 0y

where 7y, -+, Z,, ~iid Exp(1),V1,---,V, ~iid Exp(1),and Z) < --- < Z(; are order statistics. Now

% V,
—log R, = —logU(y) +log Uy, 4 n7—21+m+T

shows us that R,, L U, and that R, 4 f](l) where 0(1) < e < ﬁ(n_l) are order statistics based on (n — 1)
random uniform samples. That is, R,, ~ Beta(1,n — 1). Hence, for ¢ € (0,n°), one has

t/n®
P(nSRn St):/o (n—l)(l—x)”_2dg;:1_(1_i)"—1_

nS
By a similar argument to Exercise 1.1, one concludes that
diverges, s>1

n*R, % Exp(1), s=1
0, 0<s<1

(b) Recall that U,y ~ Beta(n, 1). Fix an arbitrarily small positive real ¢ > 0. One has
P(|Upy =1 >€) =P(Upmy <l—¢€) =(1—-€" =0
as n — oo. This concludes that Uj,,) 2 1 by definition. Furthermore, verify that
P(n(l—Ugp)) <t) :P(U(n) > 1—;) =1- (1—2>n—>1—e—t

holds for ¢ > 0. That is, n(1 — U,)) 4 Exp(1).
(c) Recall that

dV Vs n
~logUpy & Th 4+ o=y o+
\Z an'r
—1OgU(r)i 1+n_21+' -+ 7‘+17
d 1 ‘/2 anr
—1 & 1
OgU(rH) +n—1+ +r—|—1



Jun 06 2023 T34 1 7 F&EY

Therefore, fori =1, --- , r, it follows out that

anr
$7H+...+7

—log UGy +log Uy
and that
4 -
—log Uy +1logUry1) = Zr—it1),

where Z 1y <.+ < Z (ry are order statistics based on r random standard exponential samples. Finally,
I d T _ T _ d
logY = Z (— log Ug;y + log U(r+1)) = Z Zr—ig1) = Z Z; = X ~ Gamma(r,1).
i=1 i=1 i=1

It only remains to compute the pdf of Y = X where X ~ Gamma(r,1). Consider the exponential map
exp : (0,00) = (1,00) and apply the Change of variables to it.

_ dx _ 1 r—1_—1lo yl_i - r—
() = P log) | 5| = 5 Qo= 0L = ey 2 o) Ty 0

1.6 Unknown

Suppose X1, - -, X,, ~ iid Poi(y) with ¢ > 0. Find a variance stabilizing transformation g such that
= d
Vi (9(Xn) — g(w) = N(0,1).

1.6.1 ANSWER

Thanks to the CLT, one has
Vi (X — ) < N(0, ).
It suffices to find g such that (¢/(n))? = 1/u. One possible answer is g(un) = 2,/p.

1.7 Unknown

Suppose that Y ~ N,,(X3, 02I) where 3 : p x 1,02 > 0. Assume that X is a known n x p matrix and that
X "X is non-singular.
(a) Find the distribution of
B=(X"X)"'xTY.
(b)LetI = X(XTX) !XT and SSE =Y " (I -1I)Y. Show that

SSE/o* ~ x*(n —p).
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(c) Are B\ and SSFE are independent? Answer with reasoning.
(d) Let 02 = SSE/(n — p). Find the distribution of

F= 119(3 _B)TXTX(B - B)/".

1.7.1 ANSWER

Duplicate to Exercise 2.3, Week 9.



