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Introduction

Consider a statistical model given by
Xi | 0; iﬂ‘qN(QhUz), 9; € R,
~ ~ 2
L(9i79i)=(9i—9i> , i=1,...,n.

Assume o2 > 0 to be known.
Our goal is to minimize the compound loss

- 1<~
L(6.6) = - > L(0;,0)).
i=1
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Introduction

Consider a statistical model given by

in i 1—10;
Xi ‘ 9/’\51 Beta <ia 70 ) ) S (071)/

L(é,-,@,-):(@,-—@,—)z, i=1,....n

Assume v > 0 to be known.
Our goal is to minimize the compound loss

~ 1<~
L(6.6) = — > L(6;,67).
i=1
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Introduction

Consider a statistical model given by

in 6; 1—6;
X|9mleeta< : ) 0;c (0,1),
v

~ 2
L(é\ljel): /’\;HIA N izl,...,n.
min(6;,1 — 6;)

Assume v > 0 to be known.
Our goal is to minimize the compound loss

e~ ~
= ; L(9;,6;).
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Introduction - Remark

1. The dispersion parameter + plays a similar role to o?.

E(X; | 0;)=0;,  Var(X;|0;) = ﬁe;(l — ).
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Introduction - Remark

1. The dispersion parameter + plays a similar role to o?.

E(X; | 0;)=0;,  Var(X;|0;) = ﬁe;(l — ).

2. We wish to heavily penalize settings where the estimate 5, is
closer to either zero or one than the truth.

—~ 2
L@,0) = [ — 0=t
n min(g,-,l—A,-) .

Joonhyuk Jung Beyond the Mean: From F-modeling to G-modeling



Bayes Estimator

Suppose a prior distribution G of 6; is given.

0. G,

Recall that the Bayes estimator of #; under the usual quadratic loss
with respect to G is given by the posterior mean:

0°(X;) = argminE¢ [((a—6;)% | Xi| =Eglo; | Xi],
a

where the expectation is taken with respect to the posterior
distribution of 8; given X;.
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Bayes Estimator

Theorem (by the authors)

Consider the new loss function:

R 2
G0y = [ — 20
n min(a,-,l—g,-) ’

Then, the Bayes estimator of 0; with respect to G is given by

. min (EG(H | X;) + %ﬂ%), %) ., Eg(0i] Xi) <
arg(0;
max (Eq(0; | X;) — 2226080 1), Bo(0: | X)

vV
NI Nl

)
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Bayes Estimator - Discussion

1. This result does not rely on the model X; | 6;.
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Bayes Estimator - Discussion

1. This result does not rely on the model X; | 6;.

2. This new estimator OI-G depends solely on the first two
posterior moments.

_ min (Eg(0; | X;) + ‘o) 1 i1 X) <
o= ™ relin) )
’2

max (Ec(0; | X)) — 1e%) 1), EG(9i|Xi)>

NI= N
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Bayes Estimator - Discussion

1. This result does not rely on the model X; | 6;.

2. This new estimator OI-G depends solely on the first two
posterior moments.

. arg(0;| X;
min (Eq(6; | X;) + 9@ 1) Eo(0: | X)) <

0F (X)) = are(0,%,
max <]Ec;(9,' | X,') — %, %) 5 EG(QI | Xi) >

NI= N

3. The estimator has the property of shifting the posterior mean
toward 0.5.
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Bayes Estimator - Discussion

1. This result does not rely on the model X; | 6;.

2. This new estimator OI-G depends solely on the first two
posterior moments.

i Varg (0;| Xi
56 (X)) = min (Ec(ei | Xi) + %, %) . Eg(6i | Xi) < 3,
' v arg(0;]| X;
max <]EG(9i | Xi) — %, %) , Eg(0; | Xi) > %

3. The estimator has the property of shifting the posterior mean
toward 0.5.

4. However, it never surpasses 0.5.
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F-modeling

Theorem (by the authors)
Under the introduced Beta model where

in 0; 1—0;
xyadet< )
'Y v

the first two posterior moments, Eg(6; | X;) and Eg(6? | X;), can
be explicitly derived given knowledge of

2

(X;) and aa 5 log 6 (Xi),

0X;

where fc(X;) denotes the marginal likelihood of X;. [The explicit
formula is given in the paper.]
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F-modeling - Discussion

1. One may call this "S-modeling” because they directly model
the score function (and its partial derivative).
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F-modeling - Discussion

1. One may call this "S-modeling” because they directly model
the score function (and its partial derivative).

2. The authors use a natural cubic spline to compute the score
function.
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F-modeling - Discussion

1. One may call this "S-modeling” because they directly model
the score function (and its partial derivative).

2. The authors use a natural cubic spline to compute the score
function.

3. Like other F-modeling methods, the resulting @(X,-) is not
necessarily monotone in X;, which is NOT desirable.

Joonhyuk Jung Beyond the Mean: From F-modeling to G-modeling 11



F-modeling - Discussion

1. One may call this "S-modeling” because they directly model
the score function (and its partial derivative).

2. The authors use a natural cubic spline to compute the score
function.

3. Like other F-modeling methods, the resulting @(X,-) is not
necessarily monotone in X;, which is NOT desirable.

4. Their estimation is valid only under the assumption that G is
symmetric about 1/2. This constraint is too restrictive (in my
opinion).
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F-modeling - Discussion

1. One may call this "S-modeling” because they directly model
the score function (and its partial derivative).

2. The authors use a natural cubic spline to compute the score
function.

3. Like other F-modeling methods, the resulting @(X,-) is not
necessarily monotone in X;, which is NOT desirable.

4. Their estimation is valid only under the assumption that G is
symmetric about 1/2. This constraint is too restrictive (in my
opinion).

5. Hence, | propose an alternative approach.
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G-modeling - Motivation

Theorem (by Joonhyuk Jung)

Under the introduced Beta model and loss function, the Bayes

estimator
i Varc(0;|X;
35(x;) min <EG((9I | Xi) + W, %) ., Eg(6; | X;) <1,
i (Xi) = el
max (EG(Qi | Xi) — %7 %) . Eg(8 | X;) > 3.

is non-decreasing in X; (for any prior distribution G ).

Corollary

G-modeling necessarily results in a monotone estimator 6¢ (X;).
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G-modeling - Proof

Proof of the Theorem (Sketch)

Rewrite the Bayes estimator as

. (Eg(67]X)
é\G(X-) _)pmn (Ei(eip(i) ) %) ) Eg(0; | Xi) < %,
i 1) — . E 1_91 2 Xi 1 )
1 — min (M, 5) , Eg(0;| X:) > 1

Now, it suffices to prove that

Eq (67 | Xi)

Ec(8; | Xi) and ——~1———=
G( | ) EG(HI | XI)

are non-decreasing in X;, respectively. Here | will only handle the
second one for brevity.
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G-modeling - Proof

Proof of the Theorem (Sketch - Continued)

For simplicity, fix v = 1. (The proof is essentially the same for
general values of v > 0.) Note that

Eg(67 | Xi) _ fol 02X (1 - X")_GW d6(9)
. AN 1 6—1 _
Ec(Oi 1 X)) J5 0X! (1 = X))~ rayra=ay 96 (0)
1 g 02
o eey‘ﬂ d6(6)
)

ro)r(
e 4600

where Y; = Iog

1—-
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G-modeling - Proof

Proof of the Theorem (Sketch - Continued)
By appealing to Cauchy-Schwarz inequality,

d Be(02]X) _ PODIN) - (P0)
ViEOIX) Y

where we define

1 k
S (V) = /O eeYiF(@)l'e(l—G) dG(0)

for k =1,2,3. Since Y; is non-decreasing in X;, we conclude the
proof.
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Simulation - Setup

G Beta Non-Beta
Symmetric A = Beta(4,4) C = iBeta(2,6)+ 3Beta(6,2)
Asymmetric B = Beta(2,6) D = 1Beta(2,6) + 1Beta(5,3)

m Sample size n = 1000
m Number of iterations = 100 times

m Dispersion v = 0.03
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Simulation - Results

m Performance: ECAP (F-modeling) < NP G-modeling <
Parametric G-modeling

m Maybe the simulation setup is too simple.

m ECAP may result in very bad estimators if the true prior G is
not symmetric about 1/2.

Joonhyuk Jung Beyond the Mean: From F-modeling to G-modeling 17



Simulation - Fit of G (Simulation A)

Fit of G (Simulation A)

] m KDE of sample 6/'s
o _| m True prior G
o™ A
" MOM estimate G
> o _|
o
c
(]
2 _
e ]
o —
o

N =1000 Bandwidth = 0.03811

Joonhyuk Jung Beyond the Mean: From F-modeling to G-modeling 18



Simulation - Fit of G (Simulation B)

Fit of G (Simulation B)

] m KDE of sample 6/'s
o _| m True prior G
o™ A
" MOM estimate G
> o _|
o
c
(]
2 _
e ]
o —
2 _
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0.0 0.2 0.4 0.6 0.8

N =1000 Bandwidth = 0.03275
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Simulation - Fit of G (Simulation C)

Fit of G (Simulation C)

] m KDE of sample 6/'s
o _| m True prior G
o™ A
" MOM estimate G
> o _|
o
c
(]
2 _
e ]
O —
o

N =1000 Bandwidth = 0.06582
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Simulation - Fit of G (Simulation D)

Fit of G (Simulation D)

] m KDE of sample 6/'s
o _| m True prior G
o™ A
" MOM estimate G
> o _|
o
c
(]
2 _
e ]
O —
o

N =1000 Bandwidth = 0.05534
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Simulation - Compound Loss (Simulation A)

Log Compound Loss (Simulation A)
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Simulation - Compound Loss (Simulation B)

Log Compound Loss (Simulation B)
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Simulation - Compound Loss (Simulation C)

Log Compound Loss (Simulation C)
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Simulation - Compound Loss (Simulation D)

Log Compound Loss (Simulation D)
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Thank You

Contact: joonhyukjung (at) uchicago.edu
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