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Introduction

Consider a statistical model given by

Xi | θi
ind∼ N

(
θi , σ

2
)
, θi ∈ R,

L(θ̂i , θi ) =
(
θ̂i − θi

)2
, i = 1, . . . , n.

Assume σ2 > 0 to be known.
Our goal is to minimize the compound loss

L(θ̂,θ) =
1

n

n∑
i=1

L(θ̂i , θi ).
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Introduction - Remark

1. The dispersion parameter γ plays a similar role to σ2.

E(Xi | θi ) = θi , Var(Xi | θi ) =
γ

1 + γ
θi (1− θi ).

2. We wish to heavily penalize settings where the estimate θ̂i is
closer to either zero or one than the truth.

L(θ̂i , θi ) =

(
θ̂i − θi

min(θ̂i , 1− θ̂i )

)2

.
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Bayes Estimator

Suppose a prior distribution G of θi is given.

θi
iid∼ G .

Recall that the Bayes estimator of θi under the usual quadratic loss
with respect to G is given by the posterior mean:

θ̂Gi (Xi ) = argmin
a

EG

[
(a− θi )2 | Xi

]
= EG [θi | Xi ],

where the expectation is taken with respect to the posterior
distribution of θi given Xi .
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Bayes Estimator

Theorem (by the authors)

Consider the new loss function:

L(θ̂i , θi ) =

(
θ̂i − θi

min(θ̂i , 1− θ̂i )

)2

.

Then, the Bayes estimator of θi with respect to G is given by

θ̂Gi (Xi ) =

min
(
EG (θi | Xi ) + VarG (θi |Xi )

EG (θi |Xi )
, 1

2

)
, EG (θi | Xi ) ≤ 1

2 ,

max
(
EG (θi | Xi )− VarG (θi |Xi )

1−EG (θi |Xi )
, 1

2

)
, EG (θi | Xi ) >

1
2 .

Joonhyuk Jung Beyond the Mean: From F-modeling to G-modeling 8



Bayes Estimator - Discussion

1. This result does not rely on the model Xi | θi .

2. This new estimator θ̂Gi depends solely on the first two
posterior moments.

θ̂Gi (Xi ) =

min
(
EG (θi | Xi ) + VarG (θi |Xi )

EG (θi |Xi )
, 1

2

)
, EG (θi | Xi ) ≤ 1

2 ,

max
(
EG (θi | Xi )− VarG (θi |Xi )

1−EG (θi |Xi )
, 1

2

)
, EG (θi | Xi ) >

1
2 .

3. The estimator has the property of shifting the posterior mean
toward 0.5.

4. However, it never surpasses 0.5.
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F-modeling

Theorem (by the authors)

Under the introduced Beta model where

Xi | θi
ind∼ Beta

(
θi
γ
,

1− θi
γ

)
,

the first two posterior moments, EG (θi | Xi ) and EG (θ2
i | Xi ), can

be explicitly derived given knowledge of

∂

∂Xi
log fG (Xi ) and

∂2

∂X 2
i

log fG (Xi ),

where fG (Xi ) denotes the marginal likelihood of Xi . [The explicit
formula is given in the paper.]
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F-modeling - Discussion

1. One may call this “S-modeling” because they directly model
the score function (and its partial derivative).

2. The authors use a natural cubic spline to compute the score
function.

3. Like other F-modeling methods, the resulting θ̂i (Xi ) is not
necessarily monotone in Xi , which is NOT desirable.

4. Their estimation is valid only under the assumption that G is
symmetric about 1/2. This constraint is too restrictive (in my
opinion).

5. Hence, I propose an alternative approach.
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G-modeling - Motivation

Theorem (by Joonhyuk Jung)

Under the introduced Beta model and loss function, the Bayes
estimator

θ̂Gi (Xi ) =

min
(
EG (θi | Xi ) + VarG (θi |Xi )

EG (θi |Xi )
, 1

2

)
, EG (θi | Xi ) ≤ 1

2 ,

max
(
EG (θi | Xi )− VarG (θi |Xi )

1−EG (θi |Xi )
, 1

2

)
, EG (θi | Xi ) >

1
2 .

is non-decreasing in Xi (for any prior distribution G).

Corollary

G-modeling necessarily results in a monotone estimator θ̂Ĝi (Xi ).
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G-modeling - Proof

Proof of the Theorem (Sketch)

Rewrite the Bayes estimator as

θ̂Gi (Xi ) =

min
(
EG (θ2

i |Xi )
EG (θi |Xi )

, 1
2

)
, EG (θi | Xi ) ≤ 1

2 ,

1−min
(
EG ((1−θi )2|Xi )
EG (1−θi |Xi )

, 1
2

)
, EG (θi | Xi ) >

1
2 .

Now, it suffices to prove that

EG (θi | Xi ) and
EG (θ2

i | Xi )

EG (θi | Xi )

are non-decreasing in Xi , respectively. Here I will only handle the
second one for brevity.
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G-modeling - Proof

Proof of the Theorem (Sketch - Continued)

For simplicity, fix γ = 1. (The proof is essentially the same for
general values of γ > 0.) Note that

EG (θ2
i | Xi )

EG (θi | Xi )
=

∫ 1
0 θ

2X θ−1
i (1− Xi )

−θ 1
Γ(θ)Γ(1−θ) dG (θ)∫ 1

0 θX
θ−1
i (1− Xi )−θ

1
Γ(θ)Γ(1−θ) dG (θ)

=

∫ 1
0 eθYi θ2

Γ(θ)Γ(1−θ) dG (θ)∫ 1
0 eθYi θ

Γ(θ)Γ(1−θ) dG (θ)
,

where Yi = log Xi
1−Xi

∈ R.
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G-modeling - Proof

Proof of the Theorem (Sketch - Continued)

By appealing to Cauchy-Schwarz inequality,

d

dYi

EG (θ2
i | Xi )

EG (θi | Xi )
=

J3(Yi )J(Yi )−
(
J2(Yi )

)2

(J(Yi ))2
≥ 0,

where we define

Jk(Yi ) :=

∫ 1

0
eθYi

θk

Γ(θ)Γ(1− θ)
dG (θ)

for k = 1, 2, 3. Since Yi is non-decreasing in Xi , we conclude the
proof.
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Simulation - Setup

G Beta Non-Beta

Symmetric A = Beta(4, 4) C = 1
2Beta(2, 6) + 1

2Beta(6, 2)

Asymmetric B = Beta(2, 6) D = 1
2Beta(2, 6) + 1

2Beta(5, 3)

Sample size n = 1000

Number of iterations = 100 times

Dispersion γ = 0.03
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Simulation - Results

Performance: ECAP (F-modeling) ≤ NP G-modeling <
Parametric G-modeling

Maybe the simulation setup is too simple.

ECAP may result in very bad estimators if the true prior G is
not symmetric about 1/2.
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Simulation - Fit of G (Simulation A)
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Simulation - Fit of G (Simulation B)
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Simulation - Fit of G (Simulation C)
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Simulation - Fit of G (Simulation D)
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Simulation - Compound Loss (Simulation A)
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Simulation - Compound Loss (Simulation B)
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Simulation - Compound Loss (Simulation C)
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Simulation - Compound Loss (Simulation D)
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Thank You

Contact: joonhyukjung (at) uchicago.edu
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